Pharmacological Targeting of EphA2: Advancing Precision Therapeutics in Cancer Treatment
DOI:
https://doi.org/10.62382/twc07y24Keywords:
EphA2 receptor, Antineoplastic agents, Immunotherapy, Targeted drug delivery systems, Drug resistanceAbstract
EphA2, an oncogenic receptor tyrosine kinase overexpressed in various malignancies, represents a compelling therapeutic target in oncology. The role of this factor in the growth of tumors, angiogenesis, and cancer metastasis has prompted the emergence of pharmacological interventions, including small-molecule inhibitors, therapeutic monoclonal antibodies, antibody-drug conjugates (ADCs), and novel modalities like proteolysis-targeting chimeras (PROTACs). While preclinical studies have demonstrated potent anticancer effects, clinical translation remains challenging due to tumor heterogeneity, suboptimal pharmacokinetics, and toxicity profiles. Current strategies focus on improving drug delivery using EphA2-targeted nanoparticles and bicycle toxin conjugates, which enhance specificity and reduce off-target effects. Immune-based approaches, such as EphA2-specific CAR-T cells and dendritic cell vaccines, are being explored for synergistic combination therapies to overcome immune resistance. Despite limited success in trials, ongoing innovations in delivery systems and biomarker development aims to address these barriers. This review emphasizes the pharmacological potential of EphA2-targeted therapies and their integration into precision oncology, highlighting critical challenges and emerging solutions for advancing these agents into clinical practice.
References
[1]Saraon P, Pathmanathan S, Snider J, Lyakisheva A, Wong V, et al. Receptor tyrosine kinases and cancer: oncogenic mechanisms and therapeutic approaches. Oncogene. 2021, 40(24), 4079-4093. DOI: 10.1038/s41388-021-01841-2
[2]Zhang N, Li Y. Receptor tyrosine kinases: Biological functions and anticancer targeted therapy. Medcomm. 2023, 4(6), e446. DOI: 10.1002/mco2.446
[3]Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2021, 13(4), e1698. DOI: 10.1002/wnan.1698
[4]Yang L, Atakhanova N, Arellano MTC, Mohamed MY, Hani T, et al. Translational research of new developments in targeted therapy of colorectal cancer. Pathology-Research and Practice. 2023, 252, 154888. DOI: 10.1016/j.prp.2023
[5]Karl KA. Shedding Light on Ligand Bias in Receptor Tyrosine Kinase Signaling, Johns Hopkins University. 2022.
[6]Hirai H, Maru Y, Hagiwara K, Nishida J, Takaku F. A novel putative tyrosine kinase receptor encoded by the eph gene. Science. 1987, 238(4834), 1717-1720. DOI: 10.1126/science.2825356
[7]de Boer ECW, van Gils JM, van Gils MJ. Ephrin-Eph signaling usage by a variety of viruses. Pharmacological Research. 2020, 159, 105038. DOI: 10.1016/j.phrs.2020.105038
[8]Giordano G, Tucciarello C, Merlini A, Cutrupi S, Pignochino Y. Targeting the EphA2 pathway: could it be the way for bone sarcomas? Cell Communication and Signaling: CCS. 2024, 22(1), 433. DOI: 10.1186/s12964-024-01811-7
[9]Lau A, Le N, Nguyen C, Kandpal RP. Signals transduced by Eph receptors and ephrin ligands converge on MAP kinase and AKT pathways in human cancers. Cellular Signalling. 2023, 104, 110579. DOI: 10.1016/j.cellsig.2022.110579
[10]Guo XT, Yang YY, Tang JQ, Xiang JJ. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Communication and Signaling: CCS. 2024, 22(1), 299. DOI: 10.1186/s12964-024-01580-3
[11]Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in cancer: molecular complexity and therapeutic opportunities. International Journal of Molecular Sciences. 2024, 25(22), 12191. DOI: 10.3390/ijms252212191
[12]Toracchio L, Carrabotta M, Mancarella C, Morrione A, Scotlandi K. EphA2 in Cancer: Molecular Complexity and Therapeutic Opportunities. International Journal of Molecular Sciences. 2024, 25(22), 12191. DOI: 10.3390/ijms252212191
[13]Batool Z, Azfal A, Liaquat L, Sadir S, Nisar R, et al. Receptor tyrosine kinases (RTKs): from biology to pathophysiology. Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders. 2023, 117-185. DOI: 10.1016/B978-0-443-18677-6.00012-9
[14]Ahmad R, Singh JK, Wunnava A, Al-Obeed O, Abdulla M, et al. Emerging trends in colorectal cancer: Dysregulated signaling pathways. International Journal of Molecular Medicine. 2021, 47(3), 14. DOI: 10.3892/ijmm.2021.4847
[15]Sabbah M, Najem A, Krayem M, Awada A, Journe F, et al. RTK inhibitors in melanoma: from bench to bedside. Cancers. 2021, 13(7), 1685. DOI: 10.3390/cancers13071685
[16]Shetty SR, Yeeravalli R, Bera T, Das A. Recent advances on epidermal growth factor receptor as a molecular target for breast cancer therapeutics. Anti-Cancer Agents in Medicinal Chemistry. 2021, 21(14), 1783-1792. DOI: 10.2174/1871520621666201222143213
[17]Kasprzak A. Insulin-like growth factor 1 (IGF-1) signaling in glucose metabolism in colorectal cancer. International Journal of Molecular Sciences. 2021, 22(12), 6434. DOI: 10.3390/ijms22126434
[18]Bhat EA, Musvi SS, Hyderi Z, Sajjad N. Therapeutics of platelet-derived growth factor and signaling in different organs. Protein Kinase Inhibitors. 2022, 671-688. DOI: 10.1016/B978-0-323-91287-7.00009-0
[19]Shah AA, Kamal MA, Akhtar S. Tumor angiogenesis and VEGFR-2: mechanism, pathways and current biological therapeutic interventions. Current Drug Metabolism. 2021, 22(1), 50-59. DOI: 10.2174/1389200221666201019143252
[20]Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mechanisms of Disease. 2022, 14(4), e1549. DOI: 10.1002/wsbm.1549
[21]Rustagi V, Nagar G, Mittal P, Singh A, Singh IK. Receptor tyrosine kinase-like orphan receptors ROR1/2: Insights into the mechanism of action, inhibition, and therapeutic potential. Protein Kinase Inhibitors. 2022, 597-621. DOI: 10.1016/B978-0-323-91287-7.00018-1
[22]Numakawa T, Odaka H. Roles of Trk receptors, tyrosine kinase receptors for neurotrophins, in the developing CNS. Receptor Tyrosine Kinases in Neurodegenerative and Psychiatric Disorders. 2023, 79-115. DOI: 10.1016/B978-0-443-18677-6.00008-7
[23]Lavareze L, Kimura TC, Scarini JF, de Lima-Souza RA, Gonçalves MWA. Gonçalves, et al. Advances and current concepts on Eph receptors and ephrins in upper digestive tract cancers. Frontiers in Oncology. 2025, 14, 1520306. DOI: 10.3389/fonc.2024.1520306
[24]Cioce M, Fazio VM. EphA2 and EGFR: friends in life, partners in crime. Can EphA2 be a predictive biomarker of response to anti-EGFR agents? Cancers. 2021, 13(4), 700. DOI: 10.3390/cancers13040700
[25]Papadakos SP, Stergiou IE, Gkolemi N, Arvanitakis K, Theocharis S. Unraveling the Significance of EPH/Ephrin Signaling in Liver Cancer: Insights into Tumor Progression and Therapeutic Implications. Cancers. 2023, 15(13), 3434. DOI: 10.3390/cancers15133434
[26]Jacobsen AV, Murphy JM. The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases. Biochemical Society Transactions. 2017, 45(3), 665-681. DOI: 10.1042/BST20160331
[27]Kania A, Klein R. Mechanisms of ephrin–Eph signalling in development, physiology and disease. Nature Reviews Molecular Cell Biology. 2016, 17(4), 240-256. DOI: 10.1038/nrm.2015.16
[28]Lisabeth EM, Falivelli G, Pasquale EB. Eph receptor signaling and ephrins. Cold Spring Harbor perspectives in biology. 2013, 5(9), a009159. DOI: 10.1101/cshperspect.a009159
[29]Liang LY, Patel O, Janes PW, Murphy JM, Lucet IS. Eph receptor signalling: from catalytic to non-catalytic functions. Oncogene. 2019, 38(39), 6567-6584. DOI: 10.1038/s41388-019-0931-2
[30]Pasquale EB. Eph–ephrin promiscuity is now crystal clear. Nature Neuroscience. 2004, 7(5), 417-418. DOI: 10.1038/nn0504-417
[31]Murai KK, Pasquale EB. Eph'ective signaling: forward, reverse and crosstalk. Journal of Cell Science. 2003, 116(14), 2823-2832. DOI: 10.1242/jcs.00625
[32]Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nature Reviews Cancer. 2010, 10(3), 165-180. DOI: 10.1038/nrc2806
[33]Pasquale EB. Eph receptors and ephrins in cancer progression. Nature Reviews Cancer. 2024, 24(1), 5-27. DOI: 10.1038/s41568-023-00634-x
[34]Gatto G, Morales D, Kania A, Klein R. EphA4 receptor shedding regulates spinal motor axon guidance. Current Biology. 2014, 24(20), 2355-2365. DOI: 10.1016/j.cub.2014.08.028
[35]Barquilla A, Pasquale EB. Eph receptors and ephrins: therapeutic opportunities. Annual Review of Pharmacology and Toxicology. 2015, 55(1), 465-487. DOI: 10.1146/annurev-pharmtox-011112-140226
[36]Lagares D, Ghassemi-Kakroodi P, Tremblay C, Santos A, Probst CK, et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nature Medicine. 2017, 23(12), 1405-1415. DOI: 10.1038/nm.4419
[37]Park JE, Son AI, Zhou R. Roles of EphA2 in development and disease. Genes. 2013, 4(3), 334-357. DOI: 10.3390/genes4030334
[38]Ieguchi K, Maru Y. Roles of EphA1/A2 and ephrin‐A1 in cancer. Cancer Science. 2019, 110(3), 841-848. DOI: 10.1111/cas.13942
[39]Noberini R, Rubio de la Torre E, Pasquale EB. Profiling Eph receptor expression in cells and tissues: a targeted mass spectrometry approach. Cell Adhesion & Migration. 2012, 6(2), 102-156. DOI: 10.4161/cam.19620
[40]Kim J, Chang IY, You HJ. Interactions between EGFR and EphA2 promote tumorigenesis through the action of Ephexin1. Cell Death & Disease. 2022, 13(6), 528. DOI: 10.1038/s41419-022-04984-6
[41]Paul MD, Grubb HN, Hristova K. Quantifying the strength of heterointeractions among receptor tyrosine kinases from different subfamilies: Implications for cell signaling. The Journal of Biological Chemistry. 2020, 295(29), 9917-9933. DOI: 10.1074/jbc.RA120.013639
[42]Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, et al. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. The Journal of Clinical Investigation. 2008, 118(1), 64-78. DOI: 10.1172/JCI33154
[43]Gai QJ, Fu Z, He J, Mao M, Yao XX, et al. EPHA2 mediates PDGFA activity and functions together with PDGFRA as prognostic marker and therapeutic target in glioblastoma. Signal Transduction and Targeted Therapy. 2022, 7(1), 33. DOI: 10.1038/s41392-021-00855-2
[44]Hamaoka Y, Negishi M, Katoh H. EphA2 is a key effector of the MEK/ERK/RSK pathway regulating glioblastoma cell proliferation. Cellular Signalling. 2016, 28(8), 937-945. DOI: 10.1016/j.cellsig.2016.04.009
[45]Gehring MP, Pasquale EB. Protein kinase C phosphorylates the EphA2 receptor on serine 892 in the regulatory linker connecting the kinase and SAM domains. Cellular Signalling. 2020, 73, 109668. DOI: 10.1016/j.cellsig.2020.109668
[46]Barquilla A, Lamberto I, Noberini R, Heynen-Genel S, Brill LM, et al. Protein kinase A can block EphA2 receptor–mediated cell repulsion by increasing EphA2 S897 phosphorylation. Molecular Biology of the Cell. 2016, 27(17), 2757-2770. DOI: 10.1091/mbc.E16-01-0048
[47]Beauchamp A, Debinski W. Ephs and ephrins in cancer: ephrin-A1 signalling. Seminars in Cell & Developmental Biology. 2012, 23(1), 109-115. DOI: 10.1016/j.semcdb.2011.10.019
[48]Nehal M, Khatoon J, Akhtar S, Khan MKA. Exploring the potential of EphA2 receptor signaling pathway: a comprehensive review in cancer treatment. Molecular Biology Reports 2024, 51(1), 337. DOI: 10.1007/s11033-024-09298-8
[49]Udayakumar D, Zhang G, Ji Z, Njauw CN, Mroz P, et al. EphA2 is a critical oncogene in melanoma. Oncogene. 2011, 30(50), 4921-4929. DOI: 10.1038/onc.2011.210
[50]Parri M, Taddei ML, Bianchini F, Calorini L, Chiarugi P. EphA2 reexpression prompts invasion of melanoma cells shifting from mesenchymal to amoeboid-like motility style. Cancer Research. 2009, 69(5), 2072-2081. DOI: 10.1158/0008-5472.CAN-08-1845
[51]Mo J, Zhao X, Dong X, Liu T, Zhao N, et al. Effect of EphA2 knockdown on melanoma metastasis depends on intrinsic ephrinA1 level. Cellular Oncology. 2020, 43(4), 655-667. DOI: 10.1007/s13402-020-00511-x
[52]Martini G, Cardone C, Vitiello PP, Belli V, Napolitano S, et al. EPHA2 is a predictive biomarker of resistance and a potential therapeutic target for improving antiepidermal growth factor receptor therapy in colorectal cancer. Molecular Cancer Therapeutics. 2019, 18(4), 845-855. DOI: 10.1158/1535-7163.MCT-18-0539
[53]Tognolini M, Lodola A. Targeting the Eph-ephrin system with protein-protein interaction (PPI) inhibitors. Current Drug Targets. 2015, 16(10), 1048-1056. DOI: 10.2174/1389450116666150825144457
[54]Giorgio C, Zanotti I, Lodola A, Tognolini M. Tognolini. Ephrin or not? Six tough questions on Eph targeting. Expert Opinion on Therapeutic Targets. 2020, 24(5), 403-415. DOI: 10.1080/14728222.2020.1745187
[55]Tognolini M, Incerti M, Hassan-Mohamed I, Giorgio C, Russo S, et al. Structure–activity relationships and mechanism of action of Eph–ephrin antagonists: interaction of cholanic acid with the EphA2 receptor. ChemMedChem. 2012, 7(6), 1071-1083. DOI: 10.1002/cmdc.201200102
[56]Salem AF, Gambini L, Billet S, Sun Y, Oshiro H, et al. Prostate cancer metastases are strongly inhibited by agonistic Epha2 ligands in an orthotopic mouse model. Cancers. 2020, 12(10), 2854. DOI: 10.3390/cancers12102854
[57]Hsu JL, Leu WJ, Hsu LC, Hsieh CH, Guh JH. Doxazosin inhibits vasculogenic mimicry in human non‑small cell lung cancer through inhibition of the VEGF‑A/VE‑cadherin/mTOR/MMP pathway. Oncology Letters. 2024, 27(4), 170. DOI: 10.3892/ol.2024.14303
[58]Aaron PA, Jamklang M, Uhrig JP, Gelli A. The blood-brain barrier internalises Cryptococcus neoformans via the EphA2‐tyrosine kinase receptor. Cellular Microbiology. 2018, 20(3), e12811. DOI: 10.1111/cmi.12811
[59]Gaelzer MM, Coelho BP, de Quadros AH, Hoppe JB, Terra SR, et al. Phosphatidylinositol 3-kinase/AKT pathway inhibition by doxazosin promotes glioblastoma cells death, upregulation of p53 and triggers low neurotoxicity. PLoS One. 2016, 11(4), e0154612. DOI: 10.1371/journal.pone.0154612
[60]Ferrari FR, Giorgio C, Zappia A, Ballabeni V, Bertoni S, et al. Pharmacological characterization of second generation FXR agonists as effective EphA2 antagonists: A successful application of target hopping approach. Biochemical Pharmacology. 2023, 209, 115452. DOI: 10.1016/j.bcp.2023.115452
[61]Darling TK. Unraveling the Mechanisms by which CD8+ T Cells and Platelets Contribute to Cerebral Malaria Immunopathology. Emory University. 2020.
[62]Vaca Altamirano GL. Targeting EphB1 Receptor in Cellular Models: Analysis of Signaling Pathways and Cross-Talk with Opioid Receptors. UNIVERSITÀ DI BOLOGNA. 2019, 31. DOI: 10.6092/unibo/amsdottorato/8958
[63]Tröster A, Jores N, Mineev KS, Sreeramulu S, DiPrima M, et al. Targeting EPHA2 with Kinase Inhibitors in Colorectal Cancer. ChemMedChem. 2023, 18(23), e202300420. DOI: 10.1002/cmdc.202300420
[64]Psilopatis I, Karniadakis I, Danos KS, Vrettou K, Michaelidou K, et al. May EPH/Ephrin Targeting Revolutionize Lung Cancer Treatment? International Journal of Molecular Sciences. 2022, 24(1), 93. DOI: 10.3390/ijms24010093
[65]Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene. 2021, 40(14), 2483-2495. DOI: 10.1038/s41388-021-01714-8
[66]O'Cearbhaill RE, Miller A, Soslow RA, Lankes HA, DeLair D, et al. A phase 2 study of dasatinib in recurrent clear cell carcinoma of the ovary, fallopian tube, peritoneum or endometrium: NRG oncology/gynecologic oncology group study 0283. Gynecologic Oncology. 2023, 176, 16-24. DOI: 10.1016/j.ygyno.2023.06.021
[67]Mezquita B, Reyes-Farias M, Pons M. FDA-approved antivirals ledipasvir and daclatasvir downregulate the Src-EPHA2-Akt oncogenic pathway in colorectal and triple-negative breast cancer cells. Biomedicine & Pharmacotherapy. 2024, 179, 117325. DOI: 10.1016/j.biopha.2024.117325
[68]Peng L, Oganesyan V, Damschroder MM, Wu H, Dall'Acqua WF. Structural and functional characterization of an agonistic anti-human EphA2 monoclonal antibody. Journal of Molecular Biology. 2011, 413(2), 390-405. DOI: 10.1016/j.jmb.2011.08.018
[69]Coffman KT, Hu M, Carles-Kinch K, Tice D, Donacki N, et al. Differential EphA2 epitope display on normal versus malignant cells. Cancer Research. 2003, 63(22), 7907-7912. PMID: 14633720
[70]Carles-Kinch K, Kilpatrick KE, Stewart JC, Kinch MS. Antibody targeting of the EphA2 tyrosine kinase inhibits malignant cell behavior. Cancer Research. 2002, 62(10), 2840-2847. PMID: 12019162
[71]Sakamoto A, Kato K, Hasegawa T, Ikeda S. An agonistic antibody to EPHA2 exhibits antitumor effects on human melanoma cells. Anticancer Research. 2018, 38(6), 3273-3282. DOI: 10.21873/anticanres.12592
[72]Lee JW, Stone RL, Lee SJ, Nam EJ, Roh JW, et al. EphA2 targeted chemotherapy using an antibody drug conjugate in endometrial carcinoma. Clinical Cancer Research. 2010, 16(9), 2562-2570. DOI: 10.1158/1078-0432.CCR-10-0017
[73]Charmsaz S, Scott AM, Boyd AW. Targeted therapies in hematological malignancies using therapeutic monoclonal antibodies against Eph family receptors. Experimental Hematology. 2017, 54, 31-39. DOI: 10.1016/j.exphem.2017.07.003
[74]Shitara K, Satoh T, Iwasa S, Yamaguchi K, Muro K, et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of the afucosylated, humanized anti-EPHA2 antibody DS-8895a: a first-in-human phase I dose escalation and dose expansion study in patients with advanced solid tumors. Journal for Immunotherapy of Cancer. 2019, 7(1), 219. DOI: 10.1186/s40425-019-0679-9
[75]Gan HK, Parakh S, Lee FT, Tebbutt NC, Ameratunga M, et al. A phase 1 safety and bioimaging trial of antibody DS-8895a against EphA2 in patients with advanced or metastatic EphA2 positive cancers. Investigational New Drugs. 2022, 40(4), 747-755. DOI: 10.1007/s10637-022-01237-3
[76]Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, et al. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy. Journal of Cellular Physiology. 2020, 235(1), 31-64. DOI: 10.1002/jcp.28967
[77]Jackson D, Gooya J, Mao SL, Kinneer K, Xu L, et al. A human antibody–drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Research. 2008, 68(22), 9367-9374. DOI: 10.1158/0008-5472.CAN-08-1933
[78]Annunziata CM, Kohn EC, LoRusso P, Houston ND, Coleman RL, et al. Phase 1, open-label study of MEDI-547 in patients with relapsed or refractory solid tumors. Investigational New Drugs. 2013, 31(1), 77-84. DOI: 10.1007/s10637-012-9801-2
[79]Chang FL, Lee CC, Tsai KC, Lin TY, Chiang CW, et al. An auristatin-based antibody-drug conjugate targeting EphA2 in pancreatic cancer treatment. Biochemical and Biophysical Research Communications. 2023, 688, 149214. DOI: 10.1016/j.bbrc.2023.149214
[80]Theivendren P, Kunjiappan S, Pavadai P, Ravi K, Murugavel A, et al. Revolutionizing cancer immunotherapy: emerging nanotechnology-driven drug delivery systems for enhanced therapeutic efficacy. ACS Measurement Science Au. 2025, 5(1), 31-55. DOI: 10.1021/acsmeasuresciau.4c00062
[81]Mudd GE, Brown A, Chen LH, van Rietschoten K, Watcham S, et al. Identification and optimization of EphA2-selective bicycles for the delivery of cytotoxic payloads. Journal of Medicinal Chemistry. 2020, 63(8), 4107-4116. DOI: 10.1021/acs.jmedchem.9b02129
[82]Bennett G, Brown A, Mudd G, Huxley P, Van Rietschoten K, et al. MMAE delivery using the bicycle toxin conjugate BT5528. Molecular Cancer Therapeutics. 2020, 19(7), 1385-1394. DOI: 10.1158/1535-7163.MCT-19-1092
[83]Madkour LH. Nanoparticle-based Drug Delivery in Cancer Treatment. CRC Press. 2022.
[84]Elumalai K, Srinivasan S, Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology. 2024, 5, 109-122. DOI: 10.1016/j.bmt.2023.09.001
[85]Qiu CH, Sun N, Zeng S, Chen LG, Gong FL, et al. Unveiling the therapeutic promise of EphA2 in glioblastoma: a comprehensive review. Discover Oncology. 2024, 15(1), 501. DOI: 10.1007/s12672-024-01380-8
[86]Liang SM, Wang QP, Wen Y, Wang Y, Li M, et al. Ligand‐independent EphA2 contributes to chemoresistance in small‐cell lung cancer by enhancing PRMT1‐mediated SOX2 methylation. Cancer Science. 2023, 114(3), 921-936. DOI: 10.1111/cas.15653
[87]Zhang MM, Wang HT, Wang M, Zhang HL, Li HZ, et al. EphA2 specific chimeric antigen receptor engineered T cells for the treatment of prostate cancer. Translational Oncology. 2024, 50, 102111. DOI: 10.1016/j.tranon.2024.102111
[88]Zhao P, Jiang DW, Huang YC, Chen CS. EphA2: A promising therapeutic target in breast cancer. Journal of Genetics and Genomics. 2021, 48(4), 261-267. DOI: 10.1016/j.jgg.2021.02.011
[89]Wei Q, Li Z, Feng HL, Ren L. Serum exosomal EphA2 is a prognostic biomarker in patients with pancreatic cancer. Cancer Management and Research. 2021, 13, 3675-3683. DOI: 10.2147/CMAR.S304719
[90]Fu YG, Rathod D, Abo-Ali EM, Dukhande VV, Patel K. EphA2-receptor targeted PEGylated nanoliposomes for the treatment of BRAFV600E mutated parent-and vemurafenib-resistant melanoma. Pharmaceutics. 2019, 11(10), 504. DOI: 10.3390/pharmaceutics11100504
[91]Gobin AM, Moon JJ, West JL. EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells. International Journal of Nanomedicine. 2008, 3(3), 351-358. DOI: 10.2147/IJN.S2810
[92]Yu BZ, Wang YS, Bing TJ, Tang YJ, Huang J, et al. Platinum prodrug nanoparticles with COX‐2 inhibition amplify pyroptosis for enhanced chemotherapy and immune activation of pancreatic cancer. Advanced Materials. 2024, 36(11), e2310456. DOI: 10.1002/adma.202310456
[93]Zhou ZM, Yuan XH, Li ZQ, Tu HJ, Li DS, et al. RNA interference targeting EphA2 inhibits proliferation, induces apoptosis, and cooperates with cytotoxic drugs in human glioma cells. Surgical Neurology. 2008, 70(6), 562-568. DOI: 10.1016/j.surneu.2008.04.031
[94]Oliveira ACN, Fernandes J, Gonçalves A, Gomes AC, Oliveira MECDR. Lipid-based nanocarriers for siRNA delivery: challenges, strategies and the lessons learned from the DODAX: MO liposomal system. Current Drug Targets. 2019, 20(1), 29-50. DOI: 10.2174/1389450119666180703145410
[95]Landen CN Jr, Chavez-Reyes A, Bucana C, Schmandt R, Deavers MT, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Research. 2005, 65(15), 6910-6918. DOI: 10.1158/0008-5472.CAN-05-0530
[96]Wagner MJ, Mitra R, McArthur MJ, Baze W, Barnhart K, et al. Preclinical mammalian safety studies of EPHARNA (DOPC nanoliposomal EphA2-targeted siRNA). Molecular Cancer Therapeutics. 2017, 16(6), 1114-1123. DOI: 10.1158/1535-7163.MCT-16-0541
[97]Oner E, Kotmakci M, Baird AM, Gray SG, Debelec Butuner B, et al. Development of EphA2 siRNA-loaded lipid nanoparticles and combination with a small‐molecule histone demethylase inhibitor in prostate cancer cells and tumor spheroids. Journal of Nanobiotechnology. 2021, 19(1), 71. DOI: 10.1186/s12951-021-00781-z
[98]Yang X, Yu YJ, Huang X, Chen QX, Wu H, et al. Delivery of platinum (II) drugs with bulky ligands in trans-geometry for overcoming cisplatin drug resistance. Materials Science & Engineering. C, Materials for Biological Applications. 2019, 96, 96-104. DOI: 10.1016/j.msec.2018.10.092
[99]Haghiralsadat F, Amoabediny G, Naderinezhad S, Zandieh-Doulabi B, Forouzanfar T, et al. Codelivery of doxorubicin and JIP1 siRNA with novel EphA2-targeted PEGylated cationic nanoliposomes to overcome osteosarcoma multidrug resistance. International Journal of Nanomedicine. 2018, 13, 3853-3866. DOI: 10.2147/IJN.S150017
[100]Wang ZG, He ZY, Wan JL, Chen AM, Cheng P, et al. EphA2-specific microvesicles derived from tumor cells facilitate the targeted delivery of chemotherapeutic drugs for osteosarcoma therapy. Journal of Nanobiotechnology. 2024, 22(1), 89. DOI: 10.1186/s12951-024-02372-0
[101]Kamoun W, Swindell E, Pien C, Luus L, Cain J, et al. Targeting epha2 in bladder cancer using a novel antibody-directed nanotherapeutic. Pharmaceutics. 2020, 12(10), 996. DOI: 10.3390/pharmaceutics12100996
[102]Patel AR, Chougule M, Singh M. EphA2 targeting pegylated nanocarrier drug delivery system for treatment of lung cancer. Pharmaceutical Research. 2014, 31(10), 2796-2809. DOI: 10.1007/s11095-014-1377-4
[103]Shen MF, Wang YS, Bing TJ, Tang YJ, Liu XY, et al. Alendronate triggered dual‐cascade targeting prodrug nanoparticles for enhanced tumor penetration and sting activation of osteosarcoma. Advanced Functional Materials. 2023, 33(49), 2307013. DOI: 10.1002/adfm.202307013
[104]Kamoun WS, Kirpotin DB, Huang ZR, Tipparaju SK, Noble CO, et al. Antitumour activity and tolerability of an EphA2-targeted nanotherapeutic in multiple mouse models. Nature Biomedical Engineering. 2019, 3(4), 264-280. DOI: 10.1038/s41551-019-0385-4
[105]Liu Z, Tao ZJ, Zhang Q, Wan S, Zhang FL, et al. YSA-conjugated mesoporous silica nanoparticles effectively target EphA2-overexpressing breast cancer cells. Cancer Chemotherapy and Pharmacology. 2018, 81(4), 687-695. DOI: 10.1007/s00280-018-3535-6
[106]Spano D, Catara G. Targeting the ubiquitin–proteasome system and recent advances in cancer therapy. Cells. 2023, 13(1), 29. DOI: 10.3390/cells13010029
[107]Yu Y, Jiang C, Zheng XT, Liu Y, Goh WP, et al. Three-dimensional highway-like graphite flakes/carbon fiber hybrid electrode for electrochemical biosensor. Materials Today Advances. 2022, 14, 100238. DOI:10.1016/j.mtadv.2022.100238
[108]Weathington NM, Mallampalli RK. Emerging therapies targeting the ubiquitin proteasome system in cancer. The Journal of Clinical Investigation. 2014, 124(1), 6-12. DOI: 10.1172/JCI71602
[109]Tsai JM, Nowak RP, Ebert BL, Fischer ES. Targeted protein degradation: from mechanisms to clinic. Nature Reviews. Molecular Cell Biology. 2024, 25(9), 740-757. DOI: 10.1038/s41580-024-00729-9
[110]Sabet O, Stockert R, Xouri G, Brüggemann Y, Stanoev A, et al. Ubiquitination switches EphA2 vesicular traffic from a continuous safeguard to a finite signalling mode. Nature Communications. 2015, 6(1), 8047. DOI: 10.1038/ncomms9047
[111]Feng J, Lu SS, Xiao T, Huang W, Yi H, et al. ANXA1 binds and stabilizes EphA2 to promote nasopharyngeal carcinoma growth and metastasis. Cancer Research. 2020, 80(20), 4386-4398. DOI: 10.1158/0008-5472.CAN-20-0560
[112]Li X, Wang F, Huang L, Yang M, Kuang E. Downregulation of EphA2 stability by RNF5 limits its tumor-suppressive function in HER2-negative breast cancers. Cell Death & Disease. 2023, 14(10), 662. DOI: 10.1038/s41419-023-06188-y
[113]Ruan JJ, Liang DD, Yan WJ, Zhong YW, Talley DC, et al. A small-molecule inhibitor and degrader of the RNF5 ubiquitin ligase. Molecular Biology of the Cell. 2022, 33(13), ar120. DOI: 10.1091/mbc.E22-06-0233
[114]Kim J, Byun I, Kim DY, Joh H, Kim HJ, et al. Targeted protein degradation directly engaging lysosomes or proteasomes. Chemical Society Reviews. 2024, 53(7), 3253-3272. DOI: 10.1039/d3cs00344b
[115]Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chemical Biology. 2018, 25(1), 67-77. e3. DOI: 10.1016/j.chembiol.2017.09.009
[116]Bai N, Miller SA, Andrianov GV, Yates M, Kirubakaran P, et al. Rationalizing PROTAC-mediated ternary complex formation using Rosetta. Journal of Chemical Information and Modeling. 2021, 61(3), 1368-1382. DOI: 10.1021/acs.jcim.0c01451
[117]Ibrahim S, Khan MU, Noreen S, Firdous S, Khurram I, et al. Advancing brain tumor therapy: unveiling the potential of PROTACs for targeted protein degradation. Cytotechnology. 2025, 77(2), 54. DOI: 10.1007/s10616-025-00716-8
[118]Samarasinghe KTG, Crews CM. Targeted protein degradation: A promise for undruggable proteins. Cell Chemical Biology. 2021, 28(7), 934-951. DOI: 10.1016/j.chembiol.2021.04.011
[119]Kamaraj R, Ghosh S, Das S, Sen S, Kumar P, et al. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjugate Chemistry. 2024, 35(8), 1089-1115. DOI: 10.1021/acs.bioconjchem.4c00253
[120]Dai E, Zhu Z, Wahed S, Qu Z, Storkus WJ, et al. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Molecular Cancer. 2021, 20(1), 171. DOI: 10.1186/s12943-021-01464-x
[121]Ghosh MK, Kumar S, Begam S, Ghosh S, Basu M. GBM immunotherapy: Exploring molecular and clinical frontiers. Life Sciences. 2024, 356, 123018. DOI: 10.1016/j.lfs.2024.123018
[122]Daei Sorkhabi A, Mohamed Khosroshahi L, Sarkesh A, Mardi A, Aghebati-Maleki A, et al. The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Frontiers in Immunology. 2023, 14, 1113882. DOI: 10.3389/fimmu.2023.1113882
[123]Wei J, Li WK, Zhang PF, Guo FK, Liu M. Current trends in sensitizing immune checkpoint inhibitors for cancer treatment. Molecular Cancer. 2024, 23(1), 279. DOI: 10.1186/s12943-024-02179-5
[124]Mohammadzadeh V, Rahiman N, Cabral H, Quader S, Zirak MR, et al. Poly-γ-glutamic acid nanoparticles as adjuvant and antigen carrier system for cancer vaccination. Journal of Controlled Release. 2023, 362, 278-296. DOI: 10.1016/j.jconrel.2023.08.049
[125]Yamaguchi S, Tatsumi T, Takehara T, Sakamori R, Uemura A, et al. Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2‐derived peptide‐pulsed dendritic cell vaccines. Cancer. 2007, 110(7), 1469-1477. DOI: 10.1002/cncr.22958
[126]McIlroy D, Gregoire M. Optimizing dendritic cell–based anticancer immunotherapy: maturation state does have clinical impact. Cancer Immunology, Immunotherapy. 2003, 52(10), 583-591. DOI: 10.1007/s00262-003-0414-7
[127]Hatano M, Kuwashima N, Tatsumi T, Dusak JE, Nishimura F, et al. Vaccination with EphA2-derived T cell-epitopes promotes immunity against both EphA2-expressing and EphA2-negative tumors. Journal of Translational Medicine. 2004, 2(1), 40. DOI: 10.1186/1479-5876-2-40
[128]Zanotta S, Galati D, De Filippi R, Pinto A. Enhancing dendritic cell cancer vaccination: the synergy of immune checkpoint inhibitors in combined therapies. International Journal of Molecular Sciences. 2024, 25(14), 7509. DOI: 10.3390/ijms25147509
[129]Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017, 168(4), 724-740. DOI: 10.1016/j.cell.2017.01.016
[130]Chow KK, Naik S, Kakarla S, Brawley VS, Shaffer DR, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma. Molecular Therapy. 2013, 21(3), 629-637. DOI: 10.1038/mt.2012.210
[131]Li N, Liu SH, Sun MJ, Chen W, Xu XG, et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung cancer. Translational Oncology. 2018, 11(1), 11-17. DOI: 10.1016/j.tranon.2017.10.009
[132]Shi H, Yu F, Mao YT, Ju QQ, Wu YC, et al. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma. Journal of Thoracic Disease. 2018, 10(5), 2779-2788. DOI: 10.21037/jtd.2018.04.91
[133]Cheng Y, Ba T, Li JQ, Ling F, Linq QT. Personalized Chimeric Antigen Receptor T-Cell Immunotherapy for Patients with Recurrent Malignant Gliomas. Journal of Clinical Trials. 2018, 8(3), 1000348. DOI: 10.4172/2167-0870.100034
[134]Kashyap D, Salman H. Targeting Interleukin-13 Receptor α2 and EphA2 in Aggressive Breast Cancer Subtypes with Special References to Chimeric Antigen Receptor T-Cell Therapy. International Journal of Molecular Sciences. 2024, 25(7), 3780. DOI: 10.3390/ijms25073780
[135]An ZJ, Hu Y, Bai Y, Zhang C, Xu C, et al. Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1. Oncoimmunology. 2021, 10(1), 1960728. DOI: 10.1080/2162402X.2021.1960728
[136]Yi ZZ, Prinzing BL, Cao F, Gottschalk S, Krenciute G. Optimizing EphA2-CAR T cells for the adoptive immunotherapy of glioma. Molecular Therapy. Methods & Clinical Development. 2018, 9, 70-80. DOI: 10.1016/j.omtm.2018.01.009
[137]Hasegawa J, Sue M, Yamato M, Ichikawa J, Ishida S, et al. Novel anti-EPHA2 antibody, DS-8895a for cancer treatment. Cancer Biology & Therapy. 2016, 17(11), 1158-1167. DOI: 10.1080/15384047.2016.1235663
[138]Festuccia C, Gravina GL, Giorgio C, Mancini A, Pellegrini C, et al. UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget. 2018, 9(36), 24347. DOI: 10.18632/oncotarget.25272
[139]Zhang T, Li JJ, Ma XJ, Yang Y, Sun W, et al. Inhibition of HDACs-EphA2 signaling axis with WW437 demonstrates promising preclinical antitumor activity in breast cancer. EBioMedicine. 2018, 31, 276-286. DOI: 10.1016/j.ebiom.2018.05.003
[140]Kamoun WS, Dugast AS, Suchy JJ, Grabow S, Fulton RB, et al. Synergy between EphA2-ILs-DTXp, a novel EphA2-targeted nanoliposomal taxane, and PD-1 inhibitors in preclinical tumor models. Molecular Cancer Therapeutics. 2020, 19(1), 270-281. DOI: 10.1158/1535-7163.MCT-19-0414
[141]Naing A, Lopez-Berestein G, Fu SQ, Tsimberidou AM, Pant S, et al. EphA2 gene targeting using neutral liposomal small interfering RNA (EPHARNA) delivery: A phase I clinical trial. Journal of Clinical Oncology. 2017, 35(15_suppl), TPS2604-TPS2604. DOI: 10.1200/JCO.2017.35.15_suppl.TPS2604
[142]Xiao T, Xiao YH, Wang WX, Tang YY, Xiao ZQ, et al. Targeting EphA2 in cancer. Journal of Hematology & Oncology. 2020, 13(1), 114. DOI: 10.1186/s13045-020-00944-9
[143]Mitri Z, Nanda R, Blackwell K, Costelloe CM, Hood I, et al. TBCRC-010: phase I/II study of dasatinib in combination with zoledronic acid for the treatment of breast cancer bone metastasis. Clinical Cancer Research. 2016, 22(23), 5706-5712. DOI: 10.1158/1078-0432.CCR-15-2845
[144]Kim C, Liu SV, Crawford J, Torres T, Chen V, et al. A phase I trial of dasatinib and osimertinib in TKI naïve patients with advanced EGFR-mutant non-small-cell lung cancer. Frontiers in Oncology. 2021, 11, 728155. DOI: 10.3389/fonc.2021.728155
[145]Miao H, Li DQ, Mukherjee A, Guo H, Petty A, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt. Cancer Cell. 2009, 16(1), 9-20. DOI: 10.1016/j.ccr.2009.04.009
[146]Grillone K, Caridà G, Luciano F, Cordua A, Di Martino MT, et al. A systematic review of non-coding RNA therapeutics in early clinical trials: a new perspective against cancer. Journal of Translational Medicine. 2024, 22(1), 731. DOI: 10.1186/s12967-024-05554-4
[147]Maher J, Davies DM. CAR based immunotherapy of solid tumours-A clinically based review of target antigens. Biology (Basel). 2023, 12(2), 287. DOI: 10.3390/biology12020287
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Zohreh Rezaei (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.