Role of Reactive Oxygen Species in Pathophysiology of Various Disorders

Authors

  • Suniti Verma University Institute of Pharma Sciences and Research, Chandigarh University, Mohali, Punjab, India Author
  • Deepanshu Kharb University Institute of Pharma Sciences and Research, Chandigarh University, Mohali, Punjab, India Author

DOI:

https://doi.org/10.62382/f50qrf37

Keywords:

Oxidative stress, Alzheimer’s disease, Parkinson’s disease, Reactive oxygen species

Abstract

Oxidative stress occurs when the body cannot efficiently eliminate reactive metabolic by-products, leading to excessive accumulation of reactive oxygen species (ROS) in cells and tissues. While ROS are normal metabolites that play essential signaling roles, various external factors-such as UV radiation, pollution, heavy metals, and certain drugs, including anticancer agents-can elevate ROS levels and disrupt redox balance. This imbalance induces cellular and tissue damage, triggering the activation of antioxidant defence mechanisms. Natural antioxidants like vitamin E, flavonoids, and polyphenols have gained research interest for their potential to counteract oxidative injury. Although the harmful effects of oxidative stress on human health are well established, its therapeutic targeting, particularly in oncology, remains debated since reducing ROS may influence treatment outcomes. This review summarizes recent insights into oxidative stress, highlighting both its detrimental and potentially beneficial roles in human health.

References

[1]Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T, et al. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience, 2013, 248, 345-358. DOI: 10.1016/j.neuroscience.2013.06.010

[2]Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, Chandra N, et al. Antioxidant gene therapy against neuronal cell death. Pharmacology & Therapeutics, 2014, 142(2), 206-230. DOI: 10.1016/j.pharmthera.2013.12.007

[3]Kaur M, Singh S, Singh A, Singh A. Mechanisms of action of formononetin, an extract from the Astragalus membranaceus medicinal plant, in ameliorating Alzheimer’s disease. Exploration of Neuroscience, 2025, 4, 100682. DOI: 10.37349/en.2025.100682

[4]Wu, J Q, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 2013, 46, 200-206. DOI: 10.1016/j.pnpbp.2013.02.015

[5]Taniyama Y, Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension (Dallas, Tex. : 1979), 2003, 42(6), 1075-1081. DOI: 10.1161/01.HYP.0000100443.09293.4F

[6]Al-Gubory KH, Garrel C, Faure P, Sugino N. Roles of antioxidant enzymes in corpus luteum rescue from reactive oxygen species-induced oxidative stress. Reproductive Biomedicine Online, 2012, 25(6), 551-560. DOI: 10.1016/j.rbmo.2012.08.004

[7]Srivastava SP, Kopasz-Gemmen O, Thurman A, Rajendran BK, Selvam MM, Kumar S, et al. The molecular determinants regulating redox signaling in diabetic endothelial cells. Frontiers in Pharmacology, 2025, 16, 1563047. DOI: 10.3389/fphar.2025.1563047

[8]Glasauer A, Chandel, NS. Targeting antioxidants for cancer therapy. Biochemical Pharmacology, 2014, 92(1), 90-101. DOI: 10.1016/j.bcp.2014.07.017

[9]Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochimica et Biophysica Acta, 2013, 1830(5), 3217-3266. DOI: 10.1016/j.bbagen.2012.09.018

[10]Singh A, Singh L, Dalal D. Formononetin as a multifaceted modulator of renal pathology: insights into fibrotic, oxidative, inflammatory, and apoptotic pathways. Pharmacological Reports, 2025, 1-15. DOI: 10.1007/s43440-025-00801-x

[11]Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, Majchrowicz G, et al. The role of antioxidants in the therapy of cardiovascular diseases-a literature review. Nutrients, 2024, 16(16), 2587. DOI: 10.3390/nu16162587

[12]Kumar S, Pandey AK. Free radicals: health implications and their mitigation by herbals. British Journal of Medicine and Medical Research, 2015, 7, 438-457.

[13]Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, et al. Oxidative stress: Harms and benefits for human health. Oxidative Medicine and Cellular Longevity, 2017, 8416763. DOI: 10.1155/2017/8416763

[14]Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, et al. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Communication and Signaling, 2024,22(1), 7. DOI: 10.1186/s12964-023-01398-5

[15]Tumilaar SG, Hardianto A, Dohi H, Kurnia D. A comprehensive review of free radicals, oxidative stress, and antioxidants: Overview, clinical applications, global perspectives, future directions, and mechanisms of antioxidant activity of flavonoid compounds. Journal of Chemistry, 2024(1), 5594386. DOI: 10.1155/2024/5594386

[16]Chaudhary P, Janmeda P, Docea AO, Yeskaliyeva B, Abdull Razis AF, Modu B, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry, 2023, 11, 1158198. DOI: 10.3389/fchem.2023.1158198

[17]Zujko ME, Witkowska AM. Dietary antioxidants and chronic diseases. Antioxidants, 2023, 12(2), 362. DOI: 10.3390/antiox12020362

[18]Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, et al. Nitric oxide signaling and sensing in age-related diseases. Antioxidants, 2024, 13(10), 1213. DOI: 10.3390/antiox13101213

[19]Dalal D, Singh L, Singh A. Desmethylglycitein attenuates scopolamine-induced cognitive deficits via Nrf-2 activation and IL-1β suppression. Neurophysiology, 2025, 1-10. DOI: 10.1007/s11062-025-09967-9

[20]Stojanovic B, Jovanovic I, Dimitrijevic Stojanovic M, Stojanovic BS, Kovacevic V, et al. Oxidative stress-driven cellular senescence: Mechanistic crosstalk and therapeutic horizons. Antioxidants, 2025, 14(8), 987. DOI: 10.3390/antiox14080987

[21]Halliwell B. Understanding mechanisms of antioxidant action in health and disease. Nature Reviews Molecular Cell Biology, 2024, 25(1), 13-33. DOI: 10.1038/s41580-023-00645-4

[22]Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 2006, 160(1), 1-40. DOI: 10.1016/j.cbi.2005.12.009

[23]Koyama H, Kamogashira T, Yamasoba T. Heavy metal exposure: Molecular pathways, clinical implications, and protective strategies. Antioxidants, 2024, 13(1), 76. DOI: 10.3390/antiox13010076

[24]Wei T, Liu J, Zhang D, Wang X, Li G, Ma R, et al. The relationship between nutrition and atherosclerosis. Frontiers in Bioengineering and Biotechnology, 2021, 9, 635504. DOI: 10.3389/fbioe.2021.635504

[25]Gulcin İ. Antioxidants: a comprehensive review. Archives of Toxicology, 2025, 99(5), 1893-1997. DOI: 10.1007/s00204-025-03997-2

[26]Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, et al. Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Digestive Diseases, 2013, 31(5-6), 459-466. DOI: 10.1159/000355245

[27]Yasui M, Kanemaru Y, Kamoshita N, Suzuki T, Arakawa T, Honma M. Tracing the fates of site-specifically introduced DNA adducts in the human genome. DNA Repair, 2014, 15, 11-20. DOI: 10.1016/j.dnarep.2014.01.003

[28]Valavanidis A, Vlachogianni T, Fiotakis K, Loridas S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. International Journal of Environmental Research and Public Health, 2013, 10(9), 3886-3907. DOI: 10.3390/ijerph10093886

[29]Pizzino G, Bitto A, Interdonato M, Galfo F, Irrera N, Mecchio A, et al. Oxidative stress and DNA repair and detoxification gene expression in adolescents exposed to heavy metals living in the Milazzo-Valle del Mela area (Sicily, Italy). Redox Biology, 2014, 2, 686-693. DOI: 10.1016/j.redox.2014.05.003

[30]Chatterjee M, Saluja R, Kanneganti S, Chinta S, Dikshit M. Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats. Cellular and Molecular Biology, 2007, 53(1), 84-93.

[31]Ceriello A. Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care, 2008, 31(Suppl 2), S181-S184. DOI: 10.2337/dc08-s245

[32]Singh A, Singh L. Acyclic sesquiterpenes nerolidol and farnesol: mechanistic insights into their neuroprotective potential. Pharmacological Reports, 2025, 77(1), 31-42. DOI: 10.1007/s43440-024-00672-8

[33]Singh A, Singh L, Dalal D. Neuroprotective potential of hispidulin and diosmin: a review of molecular mechanisms. Metabolic Brain Disease, 2025, 40, 188. DOI: 10.1007/s11011-025-01615-9

[34]Yousaf A, Kabir F, Dalal D, Singh A. Role of calycosin (a derivative of formononetin) in Parkinson’s disease. Letters in Applied NanoBioScience, 2025, 14(3), 155. DOI:10.33263/LIANBS143.155

[35]Singh A, Kabra A, Singh L. Role of formononetin (Isoflavone) in Parkinson’s disease. Letters in Applied NanoBioScience, 2025, 14(2), 72. DOI: 10.33263/LIANBS142.072

[36]Zhang Q, Li Q, Zhao H, Shu M, Luo M, Li Y, et al. Neurodegenerative disease and antioxidant biomarkers: A bidirectional Mendelian randomization study. Frontiers in Neurology, 2023, 14, 1158366. DOI: 10.3389/fneur.2023.1158366

[37]Larki-Harchegani A, Fayazbakhsh F, Nourian A, Nili-Ahmadabadi A. Chlorogenic acid protective effects on paraquat-induced pulmonary oxidative damage and fibrosis in rats. Journal of Biochemical and Molecular Toxicology, 2023, 37(7), e23352. DOI: 10.1002/jbt.23352

[38]Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biology, 2020, 33, 101544. DOI: 10.1016/j.redox.2020.101544

[39]Xu X, Pang Y, Fan X. Mitochondria in oxidative stress, inflammation and aging: from mechanisms to therapeutic advances. Signal Transduction and Targeted Therapy, 2025, 10(1), 190. DOI: 10.1038/s41392-025-02253-4

[40]Walston J, Xue Q, Semba RD, Ferrucci L, Cappola AR, Ricks M, et al. Serum antioxidants, inflammation, and total mortality in older women. American Journal of Epidemiology, 2006, 163(1), 18-26. DOI: 10.1093/aje/kwj007

[41]Ma G, Zhang S, Luo Y, Zhang C, Xu W, Wang L. The association between composite dietary antioxidant index and rheumatoid arthritis: evidence from NHANES 2001-2020. BMC Rheumatology, 2024, 8(1), 74. DOI: 10.1186/s41927-024-00447-x

[42]Dalal D, Singh L, Singh A. Mechanistic insight unrevealing the potential of Diadzein in ameliorating the Alzheimer’s disease. Frontiers in Health Informatics, 2024, 13(3), 7898-7906.

[43]Ibrahim SRM, Abdallah HM, El-Halawany AM, Mohamed GA, Alhaddad AA, Samman WA, et al. Natural reno-protective agents against cyclosporine A-induced nephrotoxicity: An overview. Molecules, 2022, 27(22), 7771. DOI: 10.3390/molecules27227771

[44]Karolin A, Escher G, Rudloff S, Sidler D. Nephrotoxicity of Calcineurin Inhibitors in Kidney Epithelial Cells is Independent of NFAT Signaling. Frontiers in Pharmacology, 2022, 12, 789080. DOI: 10.3389/fphar.2021.789080

[45]Abd-Eldayem AM, Makram SM, Messiha BAS, Abd-Elhafeez HH, Abdel-Reheim MA. Cyclosporine-induced kidney damage was halted by sitagliptin and hesperidin via increasing Nrf2 and suppressing TNF-α, NF-κB, and Bax. Scientific Reports, 2024, 14(1), 7434. DOI: 10.1038/s41598-024-57300-x

[46]Samuel JB, Stanley JA, Princess RA, Shanthi P, Sebastian MS. Gestational cadmium exposure-induced ovotoxicity delays puberty through oxidative stress and impaired steroid hormone levels. Journal of Medical Toxicology, 2011, 7(3), 195-204. DOI: 10.1007/s13181-011-0143-9

[47]Interdonato M, Pizzino G, Bitto A, Galfo F, Irrera N, Mecchio A, et al. Cadmium delays puberty onset and testis growth in adolescents. Clinical Endocrinology, 2015, 83(3), 357-362. DOI: 10.1111/cen.12704

[48]Mène-Saffrané L, DellaPenna D. Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiology and Biochemistry, 2010, 48(5), 301-309. DOI: 10.1016/j.plaphy.2009.11.004

[49]Zhang T, Yi X, Li J, Zheng X, Xu H, Liao D, et al. Vitamin E intake and multiple health outcomes: an umbrella review. Frontiers in Public Health, 2023, 11, 1035674. DOI: 10.3389/fpubh.2023.1035674

[50]Sundl I, Murkovic M, Bandoniene D, Winklhofer-Roob BM. Vitamin E content of foods: comparison of results obtained from food composition tables and HPLC analysis. Clinical Nutrition, 2007, 26(1), 145-153. DOI: 10.1016/j.clnu.2006.06.003

[51]Es-Sai B, Wahnou H, Benayad S, Rabbaa S, Laaziouez Y, El Kebbaj R, et al. Gamma-tocopherol: A comprehensive review of its antioxidant, anti-inflammatory, and anticancer properties. Molecules, 2025, 30(3), 653. DOI: 10.3390/molecules30030653

[52]de Sousa Coelho MDPS, Pereira IC, de Oliveira KGF, Oliveira IKF, Dos Santos Rizzo M, de Oliveira VA, et al. Chemopreventive and anti-tumor potential of vitamin E in preclinical breast cancer studies: A systematic review. Clinical Nutrition ESPEN, 2023, 53, 60-73. DOI: 10.1016/j.clnesp.2022.11.001

[53]Garg A, Lee JC. Vitamin E: Where are we now in vascular diseases? Life, 2022, 12(2), 310. DOI: 10.3390/life12020310

[54]Kaye A D, Thomassen AS, Mashaw SA, MacDonald EM, Waguespack A, Hickey L, et al. Vitamin E (α-Tocopherol): Emerging Clinical Role and Adverse Risks of Supplementation in Adults. Cureus, 2025, 17(2), e78679. DOI: 10.7759/cureus.78679

[55]Meydani M, Kwan P, Band M, Knight A, Guo W, Goutis J, et al. Long-term vitamin E supplementation reduces atherosclerosis and mortality in Ldlr-/- mice, but not when fed Western style diet. Atherosclerosis, 2014. 233(1), 196-205. DOI: 10.1016/j.atherosclerosis.2013.12.006

Downloads

Published

2025-12-29

Issue

Section

Articles

How to Cite

Verma, S., & Deepanshu Kharb. (2025). Role of Reactive Oxygen Species in Pathophysiology of Various Disorders. Journal of Pharmacological Biomolecules and Therapeutics, 1(2), 29-38. https://doi.org/10.62382/f50qrf37