Integrating Traditional Medicine in the Modern Management of Type 2 Diabetes Mellitus and Obesity: Mechanisms, Evidence, and Future Directions
DOI:
https://doi.org/10.62382/46mszk25Keywords:
Diabetes melitus, Homeostasis, Metabolic resilience, Ayurveda, PPAR, SignalingAbstract
The rising trend of Type 2 Diabetes Mellitus (T2DM) and obesity across the globe is one of the most significant health problems of the 21st century. In accordance with the current epidemiological statistics provided by the International Diabetes Federation and the World Obesity Federation, an incredible increase in prevalence is projected, and an excess of 853 million people are predicted to live with diabetes by 2050. Although there has been tremendous progress in the pharmacotherapy of metabolic syndrome, which is typified by insulin resistance, dysfunction of the beta-cell, and chronic low-grade inflammation, it may be assumed that the complexity of this disease will outweigh the current reductionist one-drug-one-target paradigm. This is a comprehensive narrative review with structured literature synthesis, Traditional Chinese Medicine, and Unani systems of Traditional Medicine may be integrated into the modern metabolic management. We critically analyze the ethnopharmacological foundations and molecular mechanisms of key medicinal plants, including Gymnema sylvestre, Momordica charantia, Berberis aristata, Salacia reticulata, and Curcuma longa. Emerging evidence from systems pharmacology reveals that bioactive phytoconstituents such as gymnemic acids, charantin, berberine, and curcumin exert potent pleiotropic effects. These compounds regulate key metabolic hubs such as Adenosine Monophosphate-activated Protein Kinase (AMPK), Peroxisome Proliferator-Activated Receptors (PPARs) and the incretin axis Glucagon-like peptide-1 (GLP-1) and tend to mimic or improve the activity of pharmacological agents such as metformin and acarbose. Furthermore, we examine the transformative role of modern technologies, including network pharmacology, metabolomics, and Artificial Intelligence, in decoding the synergistic interactions inherent in polyherbal formulations. Clinical evidence from randomized controlled trials is synthesized to evaluate efficacy in glycemic control Glycated haemoglobin (HbA1c reduction) and weight management, while acknowledging the heterogeneity and methodological limitations of current data. Finally, the report addresses the imperative of rigorous safety monitoring, detailing the risks of herb-drug interactions (e.g., serotonin toxicity with Garcinia cambogia) and the regulatory landscapes of the Food and Drug Administration, WHO, and AYUSH. By bridging ancient wisdom with modern systems biology, this report advocates for a paradigm shift toward a holistic, evidence-based integrative model to combat the metabolic pandemic.
References
[1]Banerjee A. Noncommunicable diseases in India: Challenges and the way forward. Journal of Postgraduate Medicine. 2019, 65(1), 5-6. DOI: 10.4103/jpgm.JPGM_157_18
[2]Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice. 2017, 128, 40-50. DOI: 10.1016/j.diabres.2017.03.024
[3]Jagadeesha Aravinda, Saboo Banshi, Wangnoo Subhash K, Gangopadhyay Kalyan Kumar, Kesavadev Jothydev, et al. Re-imagining oral semaglutide in routine clinical practice: Indian expert panel recommendations. International Journal of Diabetes and Technology. 2025, 4(3), 95-102. DOI: 10.4103/ijdt.ijdt_18_25
[4]Cuciureanu M, Caratașu CC, Gabrielian L, Frăsinariu OE, Checheriță LE, Trandafir LM, et al. 360-degree perspectives on obesity. Medicina. 2023, 59(6), 1119. DOI: 10.3390/medicina59061119
[5]Huang X, Wu Y, Ni Y, Xu H, He Y. Global, regional, and national burden of type 2 diabetes mellitus caused by high BMI from 1990 to 2021, and forecasts to 2045: analysis from the global burden of disease study 2021. Frontiers in Public Health. 2025, 13, 1515797. DOI: 10.3389/fpubh.2025.1515797
[6]Aljohary H, Murad MA, Alfkey R, Elgohary S. Stepping up to the challenge: Confronting the global burden of diabetic foot disease. Diabetic Foot - Advanced Methods of Management. 2025. DOI: 10.5772/intechopen.1012471
[7]Defo BK. Beyond the ‘transition’frameworks: the cross-continuum of health, disease and mortality framework. Global Health Action. 2014, 7(1), 24804. DOI: 10.3402/gha.v7.24804
[8]Krentz AJ. Evolution of glucose-lowering drugs for type 2 diabetes: A new era of cardioprotection. Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome. 2012, 431-454. DOI: 10.1016/B978-0-12-385083-6.00036-X
[9]Cui D, Feng X, Lei S, Zhang H, Hu W, Yang S, et al. Pancreatic β-cell failure, clinical implications, and therapeutic strategies in type 2 diabetes. Chinese Medical Journal. 2024, 137(07), 791-805. DOI: 10.1097/CM9.0000000000003034
[10]Agyei-Baffour P, Kudolo A, Quansah DY, Boateng D. Integrating herbal medicine into mainstream healthcare in Ghana: clients’ acceptability, perceptions and disclosure of use. BMC Complementary and Alternative Medicine. 2017, 17(1), 513. DOI: 10.1186/s12906-017-2025-4
[11]Kibibi Wairimu H. Integrating traditional and modern medicine: A holistic approach to diabetes care. Research Invention Journal of Biological and Applied Sciences. 2025, 5(1), 33-37. DOI: 10.59298/RIJBAS/2025/513337
[12]Huang PL. A comprehensive definition for metabolic syndrome. Disease Models & Mechanisms. 2009, 2(5-6), 231-237. DOI: 10.1242/dmm.001180
[13]Sharma H, Chandola H. Prameha in Ayurveda: correlation with obesity, metabolic syndrome, and diabetes mellitus. Part 1–etiology, classification, and pathogenesis. Journal of Alternative and Complementary Medicine. 2011, 17(6), 491-6. DOI: 10.1089/acm.2010.0396
[14]Menzin J, Korn JR, Cohen J, Lobo F, Zhang B, Friedman M, et al. Relationship between glycemic control and diabetes-related hospital costs in patients with type 1 or type 2 diabetes mellitus. Journal of Managed Care Pharmacy. 2010, 16(4), 264-275. DOI: 10.18553/jmcp.2010.16.4.264
[15]Hessler D, Fisher L, Polonsky W, Masharani U, Strycker L, Peters A, et al. Diabetes distress is linked with worsening diabetes management over time in adults with type 1 diabetes. Diabetic Medicine. 2017, 34(9), 1228-1234. DOI: 10.1111/dme.13381
[16]Ding EL, Malik VS. Convergence of obesity and high glycemic diet on compounding diabetes and cardiovascular risks in modernizing China: an emerging public health dilemma. Globalization and Health. 2008, 4(1), 4. DOI: 10.1186/1744-8603-4-4
[17]Astrup A. Healthy lifestyles in Europe: prevention of obesity and type II diabetes by diet and physical activity. Public Health Nutrition. 2001, 4(2b), 499-515. DOI: 10.1079/phn2001136
[18]Zhang H, Tan C, Wang H, Xue S, Wang M. Study on the history of Traditional Chinese Medicine to treat diabetes. European Journal of Integrative Medicine. 2010, 2(1), 41-46. DOI: 10.1016/j.eujim.2010.02.004
[19]Luofan C, Tuowei Z. Explanation of the connotation of Lei Zhongyi's theory system of chest obstruction and phlegm stasis in coronary heart disease. Academic Journal of Medicine & Health Sciences. 2023, 4(6), 1-8. DOI: 10.25236/AJMHS.2023.040601
[20]Huang Y, Guo S, Yang J, Tang Y, Zhu X, Ren S. An objective diagnosis model with integrated metabolic and immunity parameters for phlegm-dampness constitution. Evidence-Based Complementary and Alternative Medicine. 2022, 2022, 3353549. DOI: 10.1155/2022/3353549
[21]Liu H. Traditional Chinese medicine for visceral pain. Visceral pain: from bench to bedside: Springer. 2024. 119-166.
[22]Poplawski M, Isoda F, Mastaitis J, Mobbs C. Treatment of diabetes and diabetic complications with a ketogenic diet. Journal of Child Neurology. 2013, 28(8), 1009-1014. DOI: 10.1177/0883073813487596
[23]Ahmad W, Sofi G, Alam MA, Zulkifle M, Ahmad B. Understanding Holism in the light of principle underlying practice of Unani Medicine. Reviews on Environmental Health. 2021, 37(2), 189-199. DOI: 10.1515/reveh-2021-0009
[24]Wong YCP. Need of integrated dietary therapy for persons with diabetes mellitus and “unhealthy” body constitution presentations. Journal of Integrative Medicine. 2016, 14(4), 255-268. DOI: 10.1016/S2095-4964(16)60255-8
[25]Dinda B, Dinda M. Natural products, a potential source of new drugs discovery to combat obesity and diabetes: their efficacy and multi-targets actions in treatment of these diseases. Natural Products in Obesity and Diabetes: Therapeutic Potential and Role in Prevention and Treatment: Springer. 2022, 101-275. DOI:10.1007/978-3-030-92196-5_4
[26]Sahu NP, Mahato SB, Sarkar SK, Poddar G. Triterpenoid saponins from Gymnema sylvestre. Phytochemistry. 1996, 41(4), 1181-1185. DOI: 10.1016/0031-9422(95)00782-2
[27]Benton D. The plausibility of sugar addiction and its role in obesity and eating disorders. Clinical nutrition. 2010, 29(3), 288-303. DOI:10.1016/j.clnu.2009.12.001
[28]Luo H, Imoto T, Hiji Y. Inhibitory effect and mechanism of acarbose combined with gymnemic acid on maltose absorption in rat intestine. World Journal of Gastroenterology. 2001, 7(1), 9. DOI: 10.3748/wjg.v7.i1.9
[29]Wang Z, Xiong H, Ren TYS. Repair of damaged pancreatic β cells: New hope for a type 2 diabetes reversal? Journal of Translational Internal Medicine. 2021, 9(3), 150-151. DOI: 10.2478/jtim-2021-0037
[30]Saeed F, Sultan MT, Riaz A, Ahmed S, Bigiu N, Amarowicz R, et al. Bitter melon (Momordica charantia L.) fruit bioactives charantin and vicine potential for diabetes prophylaxis and treatment. Plants. 2021, 10(4), 730. DOI: 10.3390/plants10040730
[31]Missoun F, Bouabdelli F, Awatif B, Amari N, Djebli N. Antidiabetic bioactive compounds from plants. Medical Technologies Journal. 2018, 2(2), 199-214. DOI: 10.26415/2572-004X-vol2iss2p199-214
[32]Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, et al. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Frontiers in Endocrinology. 2022, 13, 800714. DOI: 10.3389/fendo.2022.800714
[33]Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiological Reviews. 2013, 93(3), 993-1017. DOI: 10.1152/physrev.00038.2012
[34]Wang H, Tang C, Gao Z, Huang Y, Zhang B, Wei J, et al. Potential role of natural plant medicine Cyclocarya paliurus in the treatment of type 2 diabetes mellitus. Journal of Diabetes Research. 2021, 1655336. DOI: 10.1155/2021/1655336
[35]Sindhwani R, Bora KS, Hazra S. The dual challenge of diabesity: pathophysiology, management, and future directions. Naunyn-Schmiedeberg's Archives of Pharmacology. 2025, 398(5), 4891-4912. DOI: 10.1007/s00210-024-03713-4
[36]Robins S. Investigating the metabolic impact of Metformin and Berberine in combination with Venetoclax for Acute Myeloid Leukaemia treatment. University of Plymouth. 2025. DOI: 10.24382/xz2p-cj96
[37]Brautbar A, Ballantyne CM. Pharmacological strategies for lowering LDL cholesterol: statins and beyond. Nature Reviews Cardiology. 2011, 8(5), 253-265. DOI: 10.1038/nrcardio.2011.2
[38]Estêvão MD, Fernandes MT, De Sousa-Coelho AL, Espírito-Santo M, Nascimento T. Telehealth for integrated cardiovascular and diabetes management: A scoping review. Journal of Diabetes Research. 2025, 2025(1), 1093671. DOI: 10.1155/jdr/1093671
[39]Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and health. Molecules. 2016, 21(3), 264. DOI: 10.3390/molecules21030264
[40]Canistro D, Chiavaroli A, Cicia D, Cimino F, Curro D, Dell'Agli M, et al. The pharmacological basis of the curcumin nutraceutical uses: An update. Pharmadvances. 2021, 3(2), 421-466. DOI:10.36118/pharmadvances.2021.06
[41]Mukai E, Fujimoto S, Inagaki N. Role of reactive oxygen species in glucose metabolism disorder in diabetic pancreatic β-cells. Biomolecules. 2022, 12(9), 1228. DOI: 10.3390/biom12091228
[42]Ježek P, Jabůrek M, Plecitá-Hlavatá L. Contribution of oxidative stress and impaired biogenesis of pancreatic β-cells to type 2 diabetes. Antioxidants & Redox Signaling. 2019, 31(10), 722-751. DOI: 10.1089/ars.2018.7656
[43]Morikawa T, Ninomiya K, Tanabe G, Matsuda H, Yoshikawa M, Muraoka O. A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia. Journal of Natural Medicines. 2021, 75(3), 449-466. DOI: 10.1007/s11418-021-01522-0
[44]Ali RB, Atangwho IJ, Kuar N, Ahmad M, Mahmud R, Asmawi MZ. In vitro and in vivo effects of standardized extract and fractions of Phaleria macrocarpa fruits pericarp on lead carbohydrate digesting enzymes. BMC Complementary and Alternative Medicine. 2013, 13(1), 39. DOI: 10.1186/1472-6882-13-39
[45]Huang TH-W, Yang Q, Harada M, Uberai J, Radford J, Li GQ, et al. Salacia oblonga root improves cardiac lipid metabolism in Zucker diabetic fatty rats: modulation of cardiac PPAR-α-mediated transcription of fatty acid metabolic genes. Toxicology and Applied Pharmacology. 2006, 210(1-2), 78-85. DOI: 10.1016/j.taap.2005.07.020
[46]Srichamroen A, Thomson AB, Field CJ, Basu TK. In vitro intestinal glucose uptake is inhibited by galactomannan from Canadian fenugreek seed (Trigonella foenum graecum L) in genetically lean and obese rats. Nutrition Research, 2009, 29(1), 49-54. DOI: 10.1016/j.nutres.2008.11.002
[47]Srinivasan K. Fenugreek (Trigonella foenum-graecum): A review of health beneficial physiological effects. Food Reviews International. 2006, 22(2), 203-224. DOI: 10.1080/87559120600586315
[48]Yang J, Ran Y, Yang Y, Song S, Wu Y, Qi Y, et al. 4-Hydroxyisoleucine alleviates macrophage-related chronic inflammation and metabolic syndrome in mice fed a high-fat diet. Frontiers in Pharmacology, 2021, 11, 606514. DOI: 10.3389/fphar.2020.606514
[49]Li FS, Weng JK. Demystifying traditional herbal medicine with modern approach. Nature Plants. 2017, 3, 17109. DOI: 10.1038/nplants.2017.109
[50]Leonti M, Casu L. Traditional medicines and globalization: current and future perspectives in ethnopharmacology. Frontiers in Pharmacology, 2013, 4, 92. DOI: 10.3389/fphar.2013.00092
[51]Holness MJ, Sugden PH, Silvestre MF, Sugden MC. Actions and interactions of AMPK with insulin, the peroxisomal-proliferator activated receptors and sirtuins. Expert Review of Endocrinology & Metabolism, 2012, 7(2), 191-208. DOI: 10.1586/eem.12.9
[52]Li M, Ding L, Cao L, Zhang Z, Li X, Li Z, et al. Natural products targeting AMPK signaling pathway therapy, diabetes mellitus and its complications. Frontiers in Pharmacology, 2025, 16, 1534634. DOI: 10.3389/fphar.2025.1534634
[53]Li M, Qin Y, Geng R, Fang J, Kang SG, Huang K, et al. Effects and mechanisms of phytochemicals on skeletal muscle atrophy in glucolipid metabolic disorders: current evidence and future perspectives. Food Innovation and Advances, 2025, 4(1), 83-98. DOI: 10.48130/fia-0025-0009
[54]Hardie DG. AMP-activated protein kinase: maintaining energy homeostasis at the cellular and whole-body levels. Annual Review of Nutrition, 2014, 34(1), 31-55. DOI: 10.1146/annurev-nutr-071812-161148
[55]Chinetti G, Fruchart J-C, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflammation research. 2000, 49(10), 497-505. DOI: 10.1007/s000110050622
[56]Saraf N, Sharma PK, Mondal SC, Garg VK, Singh AK. Role of PPARg2 transcription factor in thiazolidinedione-induced insulin sensitization. Journal of Pharmacy and Pharmacology. 2012, 64(2), 161-171. DOI: 10.1111/j.2042-7158.2011.01366.x
[57]Kumar V, Singh DD, Lakhawat SS, Yasmeen N, Pandey A, Singla RK. Biogenic phytochemicals modulating obesity: From molecular mechanism to preventive and therapeutic approaches. Evidence‐Based Complementary and Alternative Medicine. 2022, 2022(1), 6852276. DOI: 10.1155/2022/6852276
[58]Al-Mrabeh A. β-Cell dysfunction, hepatic lipid metabolism, and cardiovascular health in type 2 diabetes: new directions of research and novel therapeutic strategies. Biomedicines. 2021, 9(2), 226. DOI: 10.3390/biomedicines9020226
[59]Bayeva M, Sawicki KT, Ardehali H. Taking diabetes to heart__deregulation of myocardial lipid metabolism in diabetic cardiomyopathy. Journal of the American Heart Association. 2013, 2(6), e000433. DOI: 10.1161/JAHA.113.000433
[60]Akhlaghi M. The role of dietary fibers in regulating appetite, an overview of mechanisms and weight consequences. Critical Reviews in Food Science and Nutrition. 2024, 64(10), 3139-3150. DOI: 10.1080/10408398.2022.2130160
[61]Kabisch S, Weickert MO, Pfeiffer AF. The role of cereal soluble fiber in the beneficial modulation of glycometabolic gastrointestinal hormones. Critical Reviews in Food Science and Nutrition. 2024, 64(13), 4331-4347. DOI: 10.1080/10408398.2022.2141190
[62]Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, et al. Potential role of phytochemicals as glucagon-like peptide 1 receptor (GLP-1R) agonists in the treatment of diabetes mellitus. Pharmaceuticals. 2024, 17(6), 736. DOI: 10.3390/ph17060736
[63]Kuthati Y, Davuluri VNG, Wong CS. Therapeutic effects of GLP-1 receptor agonists and DPP-4 inhibitors in neuropathic pain: mechanisms and clinical implications. Biomolecules. 2025, 15(5), 622. DOI: 10.3390/biom15050622
[64]Pechmann L, Pinheiro F, Andrade V, Moreira C. The multiple actions of dipeptidyl peptidase 4 (DPP-4) and its pharmacological inhibition on bone metabolism: a review. Diabetology & Metabolic Syndrome. 2024, 16(1), 175. DOI: 10.1186/s13098-024-01412-x
[65]Naim MJ. A Review of Dipeptidyl Peptidase-4 (DPP-4) and its potential synthetic derivatives in the management of Diabetes Mellitus. Journal of Angiotherapy. 2024, 8(1), 1-12. DOI: 10.25163/angiotherapy.819417
[66]Liu QK. Mechanisms of action and therapeutic applications of GLP-1 and dual GIP/GLP-1 receptor agonists. Frontiers in Endocrinology. 2024, 15, 1431292. DOI: 10.3389/fendo.2024.1431292
[67]Ruiz-Saavedra S, Salazar N, Suárez A, Diaz Y, Del Rey CG, González S, et al. Human fecal alpha-glucosidase activity and its relationship with gut microbiota profiles and early stages of intestinal mucosa damage. Anaerobe. 2024, 87, 102853. DOI: 10.1016/j.anaerobe.2024.102853
[68]Zurek N, Aljadeff N, Khoury D, Aplin LM, Lotem A. Social demonstration of colour preference improves the learning of associated demonstrated actions. Animal Cognition. 2024, 27(1), 31. DOI: 10.1007/s10071-024-01865-7 .
[69]Lebenthal E, Zheng BY, Lu RB, Lerner A. Small intestinal glucoamylase deficiency and starch malabsorption: a newly recognized alpha-glucosidase deficiency in children. Journal of Pediatrics. 1994, 124(4), 541-546. DOI: 10.1016/S0022-3476(94)70293-4
[70]Kooti W, Farokhipour M, Asadzadeh Z, Ashtary-Larky D, Asadi-Samani M. The role of medicinal plants in the treatment of diabetes: a systematic review. Electron Physician. 2016, 8(1), 1832-1842. DOI: 10.19082/1832
[71]Alam S, Sarker MMR, Sultana TN, Chowdhury MNR, Rashid MA, Chaity NI, et al. Antidiabetic phytochemicals from medicinal plants: prospective candidates for new drug discovery and development. Frontiers in Endocrinology. 2022, 13, 800714. DOI: 10.3389/fendo.2022.800714
[72]Alam F, Shafique Z, Amjad ST, Bin Asad MHH. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytotherapy Research. 2019, 33(1), 41-54. DOI: 10.1002/ptr.6211
[73]Pasmans K, Meex RC, van Loon LJ, Blaak EE. Nutritional strategies to attenuate postprandial glycemic response. Obesity Reviews. 2022, 23(9), e13486. DOI: 10.1111/obr.13486
[74]Birks S, Peeters A, Backholer K, O'Brien P, Brown W. A systematic review of the impact of weight loss on cancer incidence and mortality. Obesity Reviews. 2012, 13(10), 868-891. DOI: 10.1111/j.1467-789X.2012.01010.x
[75]Dimitriadis GD, Maratou E, Kountouri A, Board M, Lambadiari V. Regulation of postabsorptive and postprandial glucose metabolism by insulin-dependent and insulin-independent mechanisms: an integrative approach. Nutrients. 2021, 13(1), 159. DOI: 10.3390/nu13010159
[76]Lee BM, Wolever TM. Effect of glucose, sucrose and fructose on plasma glucose and insulin responses in normal humans: comparison with white bread. European Journal of Clinical Nutrition. 1998, 52(12), 924-928. DOI: 10.1038/sj.ejcn.1600666
[77]Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Molecular and Cellular Endocrinology. 2012, 364(1-2), 1-27. DOI: 10.1016/j.mce.2012.08.003
[78]Fu Z, R. Gilbert E, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current Diabetes Reviews. 2013, 9(1), 25-53. DOI: 10.2174/157339913804143225
[79]Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from human islet amyloid polypeptide-induced toxicity. Journal of Clinical Investigation. 2014, 124(8), 3489-3500. DOI: 10.1172/JCI71981
[80]Mullane K, Williams M. Preclinical models of Alzheimer's disease: relevance and translational validity. Current Protocols in Pharmacology. 2019, 84(1), e57. DOI: 10.1002/cpph.57
[81]Harman NL, Sanz-Moreno A, Papoutsopoulou S, Lloyd KA, Ameen-Ali KE, Macleod M, et al. Can harmonisation of outcomes bridge the translation gap for pre-clinical research? A systematic review of outcomes measured in mouse models of type 2 diabetes. Journal of Translational Medicine. 2020, 18(1), 468. DOI: 10.1186/s12967-020-02649-6
[82]Tobias DK, Merino J, Ahmad A, Aiken C, Benham JL, Bodhini D, et al. Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine. Nature Medicine. 2023, 29(10), 2438-2457. DOI: 10.1038/s41591-023-02502-5
[83]Hemmingsen B, Lund SS, Gluud C, Vaag A, Almdal T, Hemmingsen C, et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomised clinical trials. British Medical Journal. 2011, 343. DOI: 10.1136/bmj.d6898
[84]Golden SH, Bass EB. Validity of meta-analysis in diabetes: meta-analysis is an indispensable tool in evidence synthesis. Diabetes Care. 2013, 36(10), 3368-3373. DOI: 10.2337/dc13-1196
[85]Haw JS, Galaviz KI, Straus AN, Kowalski AJ, Magee MJ, Weber MB, et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Internal Medicine. 2017, 177(12), 1808-1817. DOI: 10.1001/jamainternmed.2017.6040
[86]Wang J, Bi C, Xi H, Wei F. Effects of administering berberine alone or in combination on type 2 diabetes mellitus: a systematic review and meta-analysis. Frontiers in Pharmacology. 2024, 15, 1455534. DOI: 10.3389/fphar.2024.1455534
[87]Shi L, Wang W, Jing C, Hu J, Liao X. Berberine and health outcomes: an overview of systematic reviews. BMC Complementary Medicine and Therapies. 2025, 25(1), 147. DOI: 10.1186/s12906-025-04872-4
[88]Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta‐analysis. Evidence‐Based Complementary and Alternative Medicine. 2012, 2012(1), 591654. DOI: /10.1155/2012/591654
[89]Xie W, Su F, Wang G, Peng Z, Xu Y, Zhang Y, et al. Glucose-lowering effect of berberine on type 2 diabetes: A systematic review and meta-analysis. Frontiers in Pharmacology. 2022, 13, 1015045. DOI: 10.3389/fphar.2022.1015045
[90]Governa P, Baini G, Borgonetti V, Cettolin G, Giachetti D, Magnano AR, et al. Phytotherapy in the management of diabetes: A review. Molecules. 2018, 23(1), 105. DOI: 10.3390/molecules23010105
[91]Panigrahi A, Mohanty S. Efficacy and safety of HIMABERB® Berberine on glycemic control in patients with prediabetes: double-blind, placebo-controlled, and randomized pilot trial. BMC Endocrine Disorders. 2023, 23(1), 190. DOI: 10.1186/s12902-023-01444-w
[92]Guo J, Chen H, Zhang X, Lou W, Zhang P, Qiu Y, et al. The effect of berberine on metabolic profiles in type 2 diabetic patients: a systematic review and meta‐analysis of randomized controlled trials. Oxidative Medicine and Cellular Longevity. 2021, 2021(1), 2074610. DOI: 10.1155/2021/2074610
[93]Och A, Podgórski R, Nowak R. Biological activity of berberine__a summary update. Toxins. 2020, 12(11), 713. DOI: 10.3390/toxins12110713
[94]Shrivastava S, Sharma A, Saxena N, Bhamra R, Kumar S. Addressing the preventive and therapeutic perspective of berberine against diabetes. Heliyon. 2023, 9(11), e21233. DOI: 10.1016/j.heliyon.2023.e21233
[95]Wang H, Zhu C, Ying Y, Luo L, Huang D, Luo Z. Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget. 2017, 9(11), 10135-10146. DOI: 10.18632/oncotarget.20807
[96]Cao C, Su M. Effects of berberine on glucose-lipid metabolism, inflammatory factors and insulin resistance in patients with metabolic syndrome. Experimental and Therapeutic Medicine. 2019, 17(4), 3009-3014. DOI: 10.3892/etm.2019.7295
[97]Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Frontiers in Pharmacology. 2023, 14, 1283784. DOI: 10.3389/fphar.2023.1283784
[98]Zieniuk B, Pawełkowicz M. Berberine as a Bioactive Alkaloid: Multi-omics perspectives on its role in obesity management. Metabolites. 2025, 15(7), 467. DOI: 10.3390/metabo15070467
[99]Sikora B, Bahadori B, Magg AD, Moghadasian N, Moghadasian MH. Berberine: A bitter phytochemical with diversely sweet therapeutic properties. Nutrition Reviews. 2025, nuaf172. DOI: 10.1093/nutrit/nuaf172
[100]Yin J, Xing H, Ye J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism. 2008, 57(5), 712-717. DOI: 10.1016/j.metabol.2008.01.013
[101]Ming J, Yu X, Xu X, Wang L, Ding C, Wang Z, et al. Effectiveness and safety of Bifidobacterium and berberine in human hyperglycemia and their regulatory effect on the gut microbiota: a multi-center, double-blind, randomized, parallel-controlled study. Genome Medicine. 2021, 13(1), 125. DOI: 10.1186/s13073-021-00942-7
[102]Li Jing, Zhong Yixuan, Bai Jingjing, Chen Shuohua, Cai Jun, Wu Shouling, et al. Composition and functional capacity of gut microbes are associated with arterial stiffness: A prospective study. Cardiology Discovery. 2023, 3(2), 102-111. DOI: 10.1097/CD9.0000000000000085
[103]Vijayakumar S, Morvin Yabesh JE, Prabhu S, Manikandan R, Muralidharan B. Quantitative ethnomedicinal study of plants used in the Nelliyampathy hills of Kerala, India. Journal of Ethnopharmacology. 2015, 161, 238-254. DOI: 10.1016/j.jep.2014.12.006
[104]Ali SA, Datusalia AK. Therapeutic effects of berberine on hyperammonemia-associated neuroinflammation in thioacetamide-induced hepatic encephalopathy. Toxicology and Applied Pharmacology. 2025, 505, 117569. DOI: 10.1016/j.taap.2025.117569
[105]Witters LA. The blooming of the French lilac. Journal of Clinical Investigation. 2001, 108(8), 1105-1107. DOI: 10.1172/JCI14178
[106]Ye Y, Liu X, Wu N, Han Y, Wang J, Yu Y, et al. Efficacy and safety of berberine alone for several metabolic disorders: a systematic review and meta-analysis of randomized clinical trials. Frontiers in Pharmacology. 2021, 12, 653887. DOI: 10.3389/fphar.2021.653887
[107]Zuniga LY, González-Ortiz M, Martinez-Abundis E. Effect of Gymnema sylvestre administration on metabolic syndrome, insulin sensitivity, and insulin secretion. Journal of Medicinal Food. 2017, 20(8), 750-754. DOI: 10.1089/jmf.2017.0001
[108]Leach MJ. Gymnema sylvestre for diabetes mellitus: a systematic review. Journal of Alternative and Complementary Medicine. 2007, 13(9), 977-983. DOI: 10.1089/acm.2006.6387
[109]Nani A, Bertuzzi F, Meneghini E, Mion E, Pintaudi B. Combined inositols, α-lactalbumin, gymnema sylvestre and zinc improve the lipid metabolic profile of patients with type 2 diabetes mellitus: a randomized clinical trial. Journal of Clinical Medicine. 2023, 12(24), 7650. DOI: 10.3390/jcm12247650
[110]Muzaffar H, Qamar I, Bashir M, Jabeen F, Irfan S, Anwar H. Gymnema Sylvestre supplementation restores normoglycemia, corrects dyslipidemia, and transcriptionally modulates pancreatic and hepatic gene expression in alloxan-induced hyperglycemic rats. Metabolites. 2023, 13(4), 516. DOI: 10.3390/metabo13040516
[111]Basciani S, Nordio M, Dinicola S, Unfer V, Gnessi L. Diet plus inositols, α-lactalbumin and Gymnema sylvestre: the successful combo to restore body weight and metabolic profile in obese and dysmetabolic patients. Nutrients. 2023, 15(14), 3142. DOI: 10.3390/nu15143142
[112]Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Medica. 2015, 81(12/13), 975-994. DOI: 10.1055/s-0035-1546131
[113]Derosa G, D’Angelo A, Angelini F, Belli L, Cicero AF, Da Ros R, et al. Nutraceuticals and supplements in management of prediabetes and diabetes. Nutrients. 2025, 17(1), 14. DOI: 10.3390/nu17010014
[114]Siam NH, Snigdha NN, Tabasumma N, Parvin I. Diabetes Mellitus and Cardiovascular Disease: exploring epidemiology, pathophysiology, and treatment strategies. Reviews in Cardiovascular Medicine. 2024, 25(12), 436. DOI: 10.31083/j.rcm2512436
[115]Devangan S, Varghese B, Johny E, Gurram S, Adela R. The effect of Gymnema sylvestre supplementation on glycemic control in type 2 diabetes patients: A systematic review and meta‐analysis. Phytotherapy Research. 2021, 35(12), 6802-12. DOI: 10.1002/ptr.7265
[116]Zhang X, Qiu H, Li C, Cai P, Qi F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Bioscience Trends. 2021, 15(5), 283-98. DOI: 10.5582/bst.2021.01318
[117]Xie X, Wu C, Hao Y, Wang T, Yang Y, Cai P, et al. Benefits and risks of drug combination therapy for diabetes mellitus and its complications: a comprehensive review. Frontiers in Endocrinology. 2023, 14:1301093. DOI: 10.3389/fendo.2023.1301093
[118]Ebadi AG. Synergistic approaches in diabetes management: The role of anti-diabetic drugs and herbal medicine in therapeutic strategies. Nepal Journal of Medical Sciences. 2025, 10(2). DOI:10.3126/njms.v10i2.79012
[119]Birdee GS, Yeh G. Complementary and alternative medicine therapies for diabetes: a clinical review. Clinical Diabetes. 2010, 28(4), 147-55. DOI: 10.2337/diaclin.28.4.147
[120]Karampelias C, Liu KC, Tengholm A, Andersson O. Mechanistic insights and approaches for beta cell regeneration. Nature Chemical Biology. 2025, 21(6), 807-18. DOI: 10.1038/s41589-024-01822-y
[121]Manolopoulos A, Yao PJ, Kapogiannis D. Extracellular vesicles: translational research and applications in neurology. Nature Reviews Neurology. 2025, 1-18. DOI: 10.1038/s41582-025-01080-z
[122]Spears E, Serafimidis I, Powers AC, Gavalas A. Debates in pancreatic beta cell biology: Proliferation versus progenitor differentiation and transdifferentiation in restoring β cell mass. Frontiers in Endocrinology. 2021, 12, 722250. DOI: 10.3389/fendo.2021.722250
[123]Zhang X, Zhao Y, Song Y, Miao M. Effects of Momordica charantia L. supplementation on glycemic control and lipid profile in type 2 diabetes mellitus patients: A systematic review and meta-analysis of randomized controlled trials. Heliyon. 2024, 10(10), e31126. DOI: 10.1016/j.heliyon.2024.e31126
[124]Peter EL, Nagendrappa PB, Kaligirwa A, Ogwang PE, Sesaazi CD. The efficacy and safety of Momordica charantia L. in animal models of type 2 diabetes mellitus, A systematic review and meta-analysis. bioRxiv. 2019, 681494. DOI: 10.1002/ptr.6853
[125]Zhou Q, Lei X, Fu S, Li Z, Chen Y, Long C, et al. Efficacy of cinnamon supplementation on glycolipid metabolism in T2DM diabetes: A meta-analysis and systematic review. Frontiers in Physiology. 2022, 13, 960580. DOI: 10.3389/fphys.2022.960580
[126]Laczkó-Zöld E, Csupor-Löffler B, Kolcsár EB, Ferenci T, Nan M, Tóth B, et al. The metabolic effect of Momordica charantia cannot be determined based on the available clinical evidence: a systematic review and meta-analysis of randomized clinical trials. Frontiers in Nutrition. 2024, 10, 1200801. DOI: 10.3389/fnut.2023.1200801
[127]Naseri K, Saadati S, Sadeghi A, Asbaghi O, Ghaemi F, Zafarani F, et al. The efficacy of ginseng (Panax) on human prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis. Nutrients. 2022, 14(12), 2401. DOI: 10.3390/nu14122401
[128]Akintimehin ES, Karigidi KO, Didunyemi MO, Adetuyi FO. Comparative bioactive constituents, radical scavenging and antidiabetic properties of fresh, boiled and air-dried Momordica charantia leaves. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2024, 94(5), 1127-1135. DOI:10.1007/s40011-024-01648-7
[129]Krawczyk M, Burzynska-Pedziwiatr I, Wozniak LA, Bukowiecka-Matusiak M. Evidence from a systematic review and meta-analysis pointing to the antidiabetic effect of polyphenol-rich plant extracts from Gymnema montanum, Momordica charantia and Moringa oleifera. Current Issues in Molecular Biology. 2022, 44(2), 699-717. DOI: 10.3390/cimb44020049
[130]Meléndez-Martínez AJ, Mandić AI, Bantis F, Böhm V, Borge GIA, Brnčić M, et al. A comprehensive review on carotenoids in foods and feeds: Status quo, applications, patents, and research needs. Critical Reviews in Food Science and Nutrition. 2022, 62(8), 1999-2049. DOI: 10.1080/10408398.2020.1867959
[131]Vesa CM, Bungau SG, Tit DM, Purza AL, Bungau AF, Radu AF, et al. Exploring the impact of Momordica charantia on diabetes mellitus: from cell cultures to clinical studies. Pharmacophore. 2024, 15(2), 32-42. DOI: 10.51847/TiB6u3aEF5
[132]Choshi MS. Nutritional and biochemical evaluation of momordica balsamina leaf powder at different harvesting stages. University of Limpopo. 2023.
[133]Ponphaiboon J, Krongrawa W, Limmatvapirat S, Limmatvapirat C. Efficient extraction of bioactive compounds from Momordica charantia L. fruits using ultrasound-assisted extraction and response surface methodology optimization. Ultrasonics Sonochemistry. 2025, 124, 107709. DOI: 10.1016/j.ultsonch.2025.107709
[134]Sknepnek A, Miletić D, Stupar A, Salević-Jelić A, Nedović V, Cvetanović Kljakić A. Natural solutions for diabetes: The therapeutic potential of plants and mushrooms. Frontiers in Nutrition. 2025, 12, 1511049. DOI: 10.3389/fnut.2025.1511049
[135]Singh SK. Polypeptide-k” as phytoinsulin: How much and how far. International Journal of Green Pharmacy. 2017, 11(02). DOI: 10.22377/ijgp.v11i02.1028
[136]Koteshwar P, Raveendra KR, Allan JJ, Goudar KS, Venkateshwarlu K, Agarwal A. Effect of NR-Salacia on post-prandial hyperglycemia: A randomized double blind, placebo-controlled, crossover study in healthy volunteers. Pharmacognosy Magazine. 2013, 9(36), 344. DOI: 10.4103/0973-1296.117831
[137]Bagri P, Chester K, Khan W, Ahmad S. Aspects of extraction and biological evaluation of naturally occurring sugar-mimicking sulfonium-ion and their synthetic analogues as potent α-glucosidase inhibitors from Salacia: a review. RSC Advances. 2017, 7(45), 28152-28185. DOI:10.1039/C7RA02955A
[138]Zhu S, Liu Q, He J, Nakajima N, Samarakoon S, Swe S, et al. Genetic identification of medicinally used Salacia species by nrDNA ITS sequences and a PCR-RFLP assay for authentication of Salacia-related health foods. Journal of Ethnopharmacology. 2021, 274, 113909. DOI: 10.1016/j.jep.2021.113909
[139]Akbari M, Lankarani KB, Tabrizi R, Ghayour-Mobarhan M, Peymani P, Ferns G, et al. The effects of curcumin on weight loss among patients with metabolic syndrome and related disorders: a systematic review and meta-analysis of randomized controlled trials. Frontiers in Pharmacology. 2019, 10, 439144. DOI: 10.3389/fphar.2019.00649
[140]Lee Y-M, Kim Y. Is Curcumin Intake Really effective for chronic inflammatory metabolic disease? A review of meta-analyses of randomized controlled trials. Nutrients. 2024, 16(11), 1728. DOI: 10.3390/nu16111728
[141]Cheng M, Ding F, Li L, Dai C, Sun X, Xu J, et al. Exploring the role of curcumin in mitigating oxidative stress to alleviate lipid metabolism disorders. Frontiers in Pharmacology. 2025, 16, 1517174. DOI: 10.3389/fphar.2025.1517174
[142]Varì R, Scazzocchio B, Silenzi A, Giovannini C, Masella R. Obesity-associated inflammation: does curcumin exert a beneficial role? Nutrients. 2021, 13(3), 1021. DOI: 10.3390/nu13031021
[143]Hussain Y, Khan H, Alotaibi G, Khan F, Alam W, Aschner M, et al. How curcumin targets inflammatory mediators in diabetes: therapeutic insights and possible solutions. Molecules. 2022, 27(13), 4058. DOI: 10.3390/molecules27134058
[144]Balkrishna A, Sharma N, Srivastava D, Kukreti A, Srivastava S, Arya V. Exploring the safety, efficacy, and bioactivity of herbal medicines: bridging traditional wisdom and modern science in healthcare. Future Integrative Medicine. 2024, 3(1), 35-49. DOI: 10.14218/FIM.2023.00086
[145]Chakraborti CK. Role of adiponectin and some other factors linking type 2 diabetes mellitus and obesity. World Journal of Diabetes. 2015, 6(15), 1296. DOI: 10.4239/wjd.v6.i15.1296
[146]Lopez AM, Kornegay J, Hendrickson RG. Serotonin toxicity associated with Garcinia cambogia over-the-counter supplement. Journal of Medical Toxicology. 2014, 10(4), 399-401. DOI: 10.1007/s13181-014-0390-7
[147]Le TT, McGrath SR, Fasinu PS. Herb-drug interactions in neuropsychiatric pharmacotherapy__a review of clinically relevant findings. Current Neuropharmacology. 2022, 20(9), 1736-1751. DOI: 10.2174/1570159X19666210809100357
[148]Amadi CN, Orisakwe OE. Herb-induced liver injuries in developing nations: An update. Toxics. 2018, 6(2), 24. DOI: 10.3390/toxics6020024
[149]Bernardo J, Valentão P. Herb‐drug interactions: A short review on central and peripheral nervous system drugs. Phytotherapy Research. 2024, 38(4), 1903-1931. DOI: 10.1002/ptr.8120
[150]Mssusa AK, Holst L, Maregesi S, Kagashe G. Pharmacovigilance systems for safety monitoring of herbal medicines: assessment of the national regulatory authority, manufacturers and marketing authorisation holders in Tanzania. Journal of Pharmaceutical Policy and Practice. 2025, 18(1), 2438223. DOI: 10.1080/20523211.2024.2438223
[151]May M, Schindler C. Clinically and pharmacologically relevant interactions of antidiabetic drugs. Therapeutic Advances in Endocrinology and Metabolism. 2016, 7(2), 69-83 DOI: 10.1177/2042018816638050
[152]Banerjee S, Debnath P, Rao PN, Tripathy TB, Adhikari A, Debnath PK. Ayurveda in changing scenario of diabetes management for developing safe and effective treatment choices for the future. Journal of Complementary and Integrative Medicine. 2015, 12(2), 101-110. DOI: 10.1515/jcim-2014-0012
[153]Sanandia J, Vadalia J, Thakur M, Sheth N. HPTLC Quantification of α-Glucosidase Inhibitor Mangiferin in Hydroalcoholic extract of Salacia Species and Antidiabetic Poly-herbal Formulation. Research Journal of Pharmacy and Technology. 2023, 16(11), 5480-5484. DOI: 10.52711/0974-360X.2023.00886
[154]Zhang L. Chinese herbal medicine for diabetic kidney disease: historical perspective, clinical evidence and new therapeutic development. RMIT University. 2024. DOI: 10.1136/bmjopen-2018-025653
[155]Zhang Y, Yang Y, Ding L, Wang Z, Xiao Y, Xiao W. Emerging applications of metabolomics to assess the efficacy of traditional Chinese medicines for treating type 2 diabetes mellitus. Frontiers in Pharmacology. 2021, 12, 735410. DOI: 10.3389/fphar.2021.735410
[156]Nayarisseri A, Khandelwal R, Tanwar P, Madhavi M, Sharma D, Thakur G, et al. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery. Current Drug Targets. 2021, 22(6), 631-655. DOI: 10.2174/1389450122999210104205732
[157]Kim BG, Malek E, Choi SH, Ignatz-Hoover JJ, Driscoll JJ. Novel therapies emerging in oncology to target the TGF-β pathway. Journal of Hematology & Oncology. 202, 14(1):55. DOI: 10.1186/s13045-021-01053-x
[158]Hatcher H, Stankeviciute S, Learn C, Qu AX. Regulatory, translational, and operational considerations for the incorporation of biomarkers in drug development. Therapeutic Innovation & Regulatory Science. 202559(3):519-526. DOI: 10.1007/s43441-025-00763-5
[159]Jadhav S, Vaidya G, Vora A. A review on computational tools for antidiabetic herbs research. Discover Chemistry. 2025, 2(1), 80. DOI: 10.1007/s44371-025-00135-w
[160]Ezeanochie C, Akomolafe OO, Adeyemi C. Integrating phytomedicine research into clinical development pathways for novel therapies.Shodhshauryam International Scientific Refereed Research Journal. 2024, 7(4), 166-196.
[161]Bleavins MR, Carini C, Jurima-Romet M, Rahbari R. Biomarkers in drug development: a handbook of practice, application, and strategy. John Wiley & Sons. 2011. DOI: 10.1002/cmdc.201000433
[162]Paul T, Kumar KJ. Standardization of herbal medicines for lifestyle diseases. Role of herbal medicines: Management of Lifestyle Diseases. 2024, 545-557. DOI: 10.1007/978-981-99-7703-1_27
[163]Francis D, Yadagini TK, Ravindran R. Trawling the genome: Drug target identification in the postgenomic era. Drugs from Nature: Targets, Assay Systems and Leads. 2024, 43-88. DOI: 10.1007/978-981-99-9183-9_3
[164]McGill M, Blonde L, Chan JC, Khunti K, Lavalle FJ, Bailey CJ. The interdisciplinary team in type 2 diabetes management: Challenges and best practice solutions from real-world scenarios. Journal of Clinical & Translational Endocrinology. 2017, 7, 21-27. DOI: 10.1016/j.jcte.2016.12.001
[165]Pei X, Li Z. Narrative review of comprehensive management strategies for diabetic retinopathy: interdisciplinary approaches and future perspectives. BMJ Public Health. 2025, 3(1). DOI: 10.1136/bmjph-2024-001353
[166]Dawoud ADH. Standardization of medicinal plants: ensuring quality, safety, and global regulatory compliance in herbal drug development. Plant Biotechnology Persa. 2025, 7(4), 22-23. DOI: 10.61882/pbp.7.4.12
[167]Fung VS. A harmonisation approach to traditional Chinese medicine registration in Asian countries. Journal of Traditional Chinese Medical Sciences. 2024, 11(2), 143-147. DOI: 10.1016/j.jtcms.2024.03.001
[168]Fan TP, Deal G, Koo HL, Rees D, Sun H, Chen S, Dou JH, Makarov VG, Pozharitskaya ON, Shikov AN, Kim YS. Future development of global regulations of Chinese herbal products. Journal of Ethnopharmacology. 2012, 140(3), 568-586. DOI: 10.1016/j.jep.2012.02.029
[169]Hossain CM, Gera ME, Ali KA. Current status and challenges of herbal drug development and regulatory aspect: a global perspective. Asian Journal of Pharmaceutical and Clinical Research. 2022, 15(2), 31-41. DOI:10.22159/ajpcr.2022.v15i12.46134.
[170]Nafiu MO, Hamid AA, Muritala HF, Adeyemi SB. Preparation, standardization, and quality control of medicinal plants in Africa. Medicinal Spices and Vegetables from Africa. 2017, 171-204. DOI: 10.1016/B978-0-12-809286-6.00007-8
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Saminesh Kuma, Shivank Sharma (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.