Study of the Antibacterial, Antifungal and Photodegradation Performance of Zinc Oxide and Mg/Ag-Zinc Oxide Nanoparticles
DOI:
https://doi.org/10.62382/0x8q3p02Keywords:
Zinc oxide nanoparticles, Photodegradation, Antifungal, MICAbstract
Microbial infectious diseases remain a persistent threat to global public health. In this context, Nanotechnology has emerged as a powerful platform for contemporary technology. In this study, we synthesized pure zinc oxide (ZnO) and magnesium-silver co-doped ZnO nanoparticles (Mg/Ag-ZnO NPs) and evaluated their antibacterial and antifungal activities against Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Candida albicans using the broth microdilution method to determine minimum inhibitory concentrations (MICs). Additionally, the photocatalytic performance of NPs was assessed by monitoring the degradation of methylene blue (MB) dye under UV irradiation. Results demonstrated that Mg/Ag-ZnO NPs exhibited significantly enhanced photocatalytic activity compared to undoped ZnO, achieving 85.6% MB degradation after 180 min, attributable to the synergistic effects of Ag and Mg doping, which promote charge separation and reactive oxygen species generation. Antimicrobial assays revealed that co-doping markedly improved efficacy, MIC values for Staphylococcus epidermidis were 160, 80, 40, and 40 µg/mL, and for Staphylococcus aureus were 80, 40, 40, and 20 µg/mL, corresponding to ZnO, Mg/Ag1-ZnO, Mg/Ag2-ZnO, and Mg/Ag4-ZnO, respectively. Against the more resistant Pseudomonas aeruginosa and Candida albicans, MICs decreased from >5120 µg/mL (ZnO) to 320 µg/mL and 1280 µg/mL, respectively, with the highest doping level (Mg/Ag4-ZnO). These findings indicate that silver plays a dominant role in inhibiting Gram-positive bacteria, while combined Ag/Mg doping progressively enhances activity against Gram-negative bacteria and fungi, likely through intensified oxidative stress.
References
[1]Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, et al. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants. 2008, 25(3), 241-258. DOI: 10.1080/02652030701744538
[2]Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K. Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C. 2014, 44, 278-284. DOI: 10.1016/j.msec.2014.08.031
[3]Ramalingam B, Parandhaman T, Das SK. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials & Interfaces. 2016, 8(7), 4963-4976. DOI: 10.1021/acsami.6b00161
[4]Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine. 2012, 7, 5901-5914. DOI: 10.2147/IJN.S37397
[5]Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. International Journal of Nanomedicine. 2011, 6, 1833-1852. DOI: 10.2147/IJN.S24019
[6]Leung YH, Ng AM, Xu XY, Shen ZY, Gethings LA, Wong MT, et al. Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small. 2014, 10(6), 1171-1183. DOI: 10.1002/smll.201302434
[7]Wang LL, Hu C, Shao LQ. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. 2017, 12, 1227-1249. DOI: 10.2147/IJN.S121956
[8]Suresh S, Thambidurai S, Arumugam J, Kandasamy M, Pugazhenthiran N, Balaji D, et al. Antibacterial activity and photocatalytic oxidative performance of zinc oxide nanorods biosynthesized using Aerva lanata leaf extract. Inorganic Chemistry Communications. 2022, 139, 109398. DOI: 10.1016/j.inoche.2022.109398
[9]Koutavarapu R, Babu B, Reddy CV, Yoo K, Cho MY, Shim J. A novel one-pot approach of ZnWO4 nanorods decorated onto g-C3N4 nanosheets: 1D/2D heterojunction for enhanced solar-light-driven photocatalytic activity. Journal of Materials Science. 2020, 55(3), 1170-1183. DOI: 10.1007/s10853-019-04022-5
[10]Akpan UG, Hameed BH. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of Hazardous Materials. 2009, 170, 520-529. DOI: 10.1016/j.jhazmat.2009.05.039
[11]Soto-Robles CA, Luque PA, Gomez-Gutierrez CM, Nava O, Vilchis-Nestor AR, Lugo-Medina E, et al. Study on the effect of the concentration of Hibiscus sabdariffa extract on the green synthesis of ZnO nanoparticles. Results in Physics. 2019, 15, 102807. DOI: 10.1016/j.rinp.2019.102807
[12]Ashar A, Bhatti IA, Siddique T, Ibrahim SM, Mirza S, Bhutta ZA, et al. Integrated hydrothermal assisted green synthesis of ZnO nano discs and their water purification efficiency together with antimicrobial activity. Journal of Materials Research and Technology. 2021, 15, 6901-6917. DOI: 10.1016/j.jmrt.2021.11.009
[13]Fardood ST, Moradnia F, Mostafaei M, Afshari Z, Faramarzi V, Ganjkhanlu S. Biosynthesis of MgFe2O4 magnetic nanoparticles and their application in photodegradation of malachite green dye and kinetic study. Nanochemistry Research. 2019, 4(1), 86-93. DOI: 10.22036/ncr.2019.01.010
[14]Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiology Letters. 2008, 279(1), 71-76. DOI: 10.1111/j.1574-6968.2007.01012.x
[15]Gajjar P, Pettee B, Britt DW, Huang WJ, Johnson WP, Anderson AJ. Antimicrobial activies of commercial nanoparticles against an environmental soil microbe, Paeudomonas putida KT2440. Journal of Biological Engineering. 2009, 3, 9. DOI: 10.1186/1754-1611-3-9
[16]Bayrami A, Mohammadi Arvanagh F, Zahri S, Bayrami M. Characterization and Evaluation of Antimicrobial Effects of ZnO/Ag Nanoparticles Synthesized by Milk Thistle Seed Extract (Silybum marianum): A Short Report. Journal of Rafsanjan University of Medical Sciences. 2020, 19(5), 539-548. DOI: 10.29252/jrums.19.5.539
[17]Prabhu Y, Rao KV, Kumari BS, Kumar VSS, Pavani T. Synthesis of Fe3O4 nanoparticles and its antibacterial application. International Nano Letters. 2015, 5(2), 85-92. DOI: 10.1007/s40089-015-0141-z
[18]Hsueh YH, Tsai PH, Lin KS, Ke WJ, Chiang CL. Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains. Journal of Nanobiotechnology. 2017, 15, 77. DOI: 10.1186/s12951-017-0314-1
[19]Siddiqi KS, Rahman A, Tajuddin T, Husen A. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters. 2018, 13(1), 1-13. DOI: 10.1186/s11671-018-2532-3
[20]Scherzad A, Meyer T, Kleinsasser N, Hackenberg S. Molecular Mechanisms of Zinc Oxide Nanoparticle-Induced Genotoxicity. Materials. 2017, 10(12), 1427. DOI: 10.3390/ma10121427
[21]Hamidian K, Sarani M, Barani M, Khakbaz F. Cytotoxic performance of green synthesized Ag and Mg dual doped ZnO NPs using Salvadora persica extract against MDA-MB-231 and MCF-10 cells. Arabian Journal of Chemistry. 2022, 15(5), 103792. DOI: 10.1016/j.arabjc.2022.103792
[22]Alahmad W, Hedhili F, Al-Shomar SM, Albaqawi HS, Al-Shammari NA, Abdelrahman S. Modeling sustainable photocatalytic degradation of acidic dyes using Jordanian nano-Kaolin-TiO2 and solar energy: synergetic mechanistic insights. Heliyon. 2024, 10(17), e36978. DOI: 10.1016/j.heliyon.2024.e36978
[23]Hamidian K, Sarani M, Mohebbi S, Najafidoust A, Miri A. Study of photodegradation performance of Zn‐doped CeO2 nanoparticles for wastewater contaminants remediation under visible light. Applied Organometallic Chemistry. 2023, 37(7), e7114. DOI: 10.1002/aoc.7114
[24]Miri A, Sarani M, Najafidoust A, Varma RS. Evaluation of photocatalytic performance and cytotoxic activity of green synthesized nickel ferrite nanoparticles. Environmental Progress & Sustainable Energy. 2021, 41(2), e13757. DOI: 10.1002/ep.13757
[25]Miri A, Mousavi SR, Sarani M, Mahmoodi Z. Using Biebersteinia multifida Aqueous Extract, the Photocatalytic Activity of Synthesized Silver Nanoparticles. Oriental Journal of Chemistry. 2018, 34(3), 1-5. DOI: 10.13005/ojc/340342
[26]Suwannaruang T, Hildebrand JP, Taffa DH, Wark M, Kamonsuangkasem K, Chirawatkul P, et al. Visible light induced degradation of antibiotic ciprofloxacin over Fe-N-TiO2 mesoporous photocatalyst with anatase/rutile/brookite nanocrystal mixture. Journal of Photochemistry and Photobiology A: Chemistry. 2020, 391, 112371. DOI: 10.1016/j.jphotochem.2020.112371
[27]Azam A, Ahmed AS, Oves M, Khan MS, Habib SS, Memic A. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine. 2012, 7, 6003-6009. DOI: 10.2147/IJN.S35347
[28]Habib S, Rashid F, Tahir H, Liaqat I, Latif AA, Naseem S, et al. Antibacterial and Cytotoxic Effects of Biosynthesized Zinc Oxide and Titanium Dioxide Nanoparticles. Microorganisms. 2023, 11(6), 1363. DOI: org/10.3390/microorganisms11061363
[29]Jafari A, Ghane M, Arastoo S. Synergistic antibacterial effects of nano zinc oxide combined with silver nanocrystales. African Journal of Microbiology Research. 2011, 5(30), 5465-5473. DOI: 10.5897/AJMR11.392
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Mostafa Azizi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.