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Abstract

The rising trend of Type 2 Diabetes Mellitus (T2DM) and obesity across the globe is one of the most significant health 

problems of the 21st century. In accordance with the current epidemiological statistics provided by the International 

Diabetes Federation and the World Obesity Federation, an incredible increase in prevalence is projected, and an excess 

of 853 million people are predicted to live with diabetes by 2050. Although there has been tremendous progress in the 

pharmacotherapy of metabolic syndrome, which is typified by insulin resistance, dysfunction of the beta-cell, and 

chronic low-grade inflammation, it may be assumed that the complexity of this disease will outweigh the current 

reductionist one-drug-one-target paradigm. This is a comprehensive narrative review with structured literature synthesis,
Traditional Chinese Medicine, and Unani systems of Traditional Medicine may be integrated into the modern metabolic 

management. We critically analyze the ethnopharmacological foundations and molecular mechanisms of key medicinal 

plants, including Gymnema sylvestre, Momordica charantia, Berberis aristata, Salacia reticulata, and Curcuma longa.
Emerging evidence from systems pharmacology reveals that bioactive phytoconstituents such as gymnemic acids,
charantin, berberine, and curcumin exert potent pleiotropic effects. These compounds regulate key metabolic hubs such 

as Adenosine Monophosphate-activated Protein Kinase (AMPK), Peroxisome Proliferator-Activated Receptors (PPARs)
and the incretin axis Glucagon-like peptide-1 (GLP-1) and tend to mimic or improve the activity of pharmacological 

agents such as metformin and acarbose. Furthermore, we examine the transformative role of modern technologies,
including network pharmacology, metabolomics, and Artificial Intelligence, in decoding the synergistic interactions 

inherent in polyherbal formulations. Clinical evidence from randomized controlled trials is synthesized to evaluate 

efficacy in glycemic control Glycated haemoglobin (HbA1c reduction) and weight management, while acknowledging 

the heterogeneity and methodological limitations of current data. Finally, the report addresses the imperative of rigorous 

safety monitoring, detailing the risks of herb-drug interactions (e.g., serotonin toxicity with Garcinia cambogia) and the 

regulatory landscapes of the Food and Drug Administration, WHO, and AYUSH. By bridging ancient wisdom with 

modern systems biology, this report advocates for a paradigm shift toward a holistic, evidence-based integrative model 

to combat the metabolic pandemic.
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Graphical Abstract

Bridging ancient wisdom with modern science, this framework integrates Ayurvedic, Traditional Chinese Medicine, and
Unani principles with systems-biology approaches to elucidate multi-target therapeutic strategies for diabesity. By
mapping bioactive phytoconstituents to key metabolic pathways, including AMPK and PPAR signaling, through
network-pharmacology and computational tools, it provides a translational framework for restoring metabolic
homeostasis.

1. Introduction

1.1 The Global Metabolic Crisis: Epidemiology and Economic Burden

The 21st century is marked by a non-communicable disease crisis on a scale never before seen, with the twin epidemics
of Type 2 Diabetes Mellitus (T2DM) and obesity leading the changing epidemiological landscape [1]. The scale of this
public health emergency is captured vividly in the latest data from the International Diabetes Federation (IDF) Diabetes
Atlas 2025. According to the IDF Diabetes Atlas, an estimated 589 million adults aged 20-79 years were living with
diabetes globally in 2024, corresponding to a prevalence of approximately 11.1%, as reported in the 11th edition of the
Atlas (2025 update) [2]. Projections from the same IDF edition indicate that the global diabetes burden is expected to
rise to approximately 853 million adults by 2050 if current trends persist. Earlier IDF estimates from 2015 reported
substantially lower global prevalence, reflecting the rapid acceleration of the diabetes epidemic over the past decade [3].

This escalating burden is not merely a statistical abstraction but a reflection of profound demographic and
environmental shifts. Rapid urbanization, ageing populations, and the adoption of sedentary lifestyles have created an
"obesogenic" environment that fuels metabolic dysregulation [4]. According to the 'Atlas 2025' Report of the World
Obesity Federation, there are expected to be more than double as many adults living with obesity by 2030 (1.13 billion)
as there were in 2010 (524 million). Such a combination of conditions has frequently been called “diabesity.” A high
body mass index (BMI) contributes greatly to the burden of T2DM, particularly among men and women who have
transitioned through the menopause or post-menopause state [5].

In addition to affecting morbidity, the trend also has a vast spreading effect of mortality and economic impact. Only in
2024, it was estimated that Diabetes caused a total of 3.4 million deaths or one death every nine seconds [6].
Furthermore, obesity-related complications account for nearly 10% of global deaths, a toll that now surpasses road
traffic fatalities. The financial impact of diabetes has become enormous. Global health expenditures due to diabetes are
projected to exceed USD 1 trillion in 2024, representing a growth of 338% in the last 17 years (as determined by
various International health organisations). Crucially, over 80% of individuals with diabetes reside in low- and middle-
income countries, where healthcare systems are often ill-equipped to manage chronic, progressive conditions, leading to
a significant "treatment gap" [7].

1.2 Limitations of Current Pharmacotherapy and the Integrative Imperative

In recent years, modern pharmacotherapy for T2DM has progressed immensely as part of an expanding selection of
available agents from the foundation of metformin and sulfonylureas to the development of new drug classes such as
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Dipeptidyl Peptidase-4 (DPP-4s), Sodium-Glucose Cotransporter-2 (SGLT2), and (GLP-1) receptor agonists [8]. While
these drugs have transformed diabetes care, they are not without limitations. Their accessibility and long-term
adherence are restricted, especially in LMICs, by problems like gastrointestinal side effects, hypoglycemia risk, weight
gain (with insulin and sulfonylureas), and high costs.

Furthermore, many of the current treatments for type 2 diabetes control hyperglycemia but are unable to stop the
underlying pathophysiology of the disease, which is characterised by a progressive decline in pancreatic β-cell function
[9].

Traditional Medicine (TM) systems, particularly Ayurveda, Traditional Chinese Medicine (TCM), and Unani, provide
an appealing complementary approach in this regard. These systems, refined over millennia, do not view metabolic
diseases as isolated glucocentric phenomena but as systemic dysregulations of physiological homeostasis. The World
Health Organisation recognises the critical role of TM, pointing out that because of their perceived safety and cultural
acceptability, the great majority of people worldwide rely on herbal medicines for primary healthcare [10].

However, the integration of TM into modern clinical practice is often hindered by a lack of rigorous scientific validation
and standardization. The reductionist "silver bullet" approach of modern drug discovery struggles to evaluate the
complex, multi-component nature of traditional formulations. Yet, the emergence of systems biology and network
pharmacology offers a new lens through which to understand these complex therapeutics. By mapping the interactions
between multiple bioactive phytoconstituents and biological networks, modern science is beginning to validate the
holistic principles of TM. This report aims to bridge the gap between these two worlds, providing a rigorous, evidence-
based analysis of how TMs can be integrated into the modern management of T2DM and obesity [11].

1.3 Aims and Objectives

This review aims to synthesize ethnopharmacological and mechanistic evidence on medicinal plants with putative
antidiabetic and anti-obesity effects, evaluate the quality of preclinical and clinical data, and identify translational
opportunities and limitations for integrating TM into modern metabolic care.

Specifically, the objectives are to critically appraise ethnobotanical and clinical evidence for key plants (e.g., Gymnema
sylvestre, Momordica charantia, Berberine, Salacia, Curcuma), (2) consolidate molecular mechanisms using a pathway-
centred approach (e.g., AMPK, Peroxisome Proliferator-Activated Receptors (PPARs), incretin axis), (3) assess safety
profiles and herb-drug interaction risks, (4) propose a roadmap, drawing on network pharmacology and AI, for rigorous
translational evaluation and standardization of herbal therapeutics for diabesity. The novelty of this review lies in its
integrated, evidence-graded synthesis that links traditional systems (Ayurveda, TCM, Unani) with contemporary
systems-biology tools to provide a practical translational framework focused on real-world applicability in low- and
middle-income country settings.

2. Materials and Methods

A comprehensive literature search was conducted to identify relevant studies examining the role of TM in the
management of T2DM and obesity. Electronic databases including PubMed, Scopus, Web of Science, and Google
Scholar were searched. The search covered publications from January 2000 to March 2025 using combinations of
keywords such as “T2DM,” “obesity,” “traditional medicine,” “ethnopharmacology,” “medicinal plants,” “network
pharmacology,” “systems biology,” and “artificial intelligence.” Peer‑reviewed original research articles, randomized
controlled trials (RCTs), meta‑analyses, and mechanistic studies published in English were included. Studies focusing
on in vitro, in vivo, or clinical evidence relevant to antidiabetic or anti‑obesity mechanisms were considered.
Conference abstracts, non‑peer‑reviewed articles, non‑English publications, and studies lacking sufficient
methodological detail were excluded. Titles and abstracts were initially screened for relevance, followed by full‑text
evaluation of eligible articles. Study selection was guided by relevance to ethnopharmacological use, molecular
mechanisms, clinical outcomes, and translational significance. Discrepancies in selection were resolved through
consensus. Key information including study design, sample size, intervention details, duration, primary outcomes, and
mechanistic insights was extracted. Data were synthesized qualitatively with emphasis on mechanistic pathways,
clinical relevance, and translational potential rather than quantitative meta‑analysis. Clinical evidence was appraised
based on study design, sample size, duration, consistency of outcomes, and reported methodological limitations.
Evidence strength was graded as high, moderate, or low to allow transparent interpretation of reliability and clinical
applicability.

2.1 Overview of Traditional Medicine Systems

To effectively integrate TM, it is essential to understand the theoretical frameworks that guide diagnosis and treatment
in these systems. While the terminology differs from modern pathology, the physiological states described often
correlate closely with contemporary understandings of metabolic syndrome [12]. Ayurveda, TCM, and Unani medicine
converge on a shared conceptual understanding of metabolic disease as a disorder of systemic balance rather than a
single biochemical abnormality. Ayurveda frames T2DM and obesity as outcomes of disturbed Agni and Ama
accumulation leading to Medodushti and insulin resistance, with therapeutic decisions guided by body constitution
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(Sthula versus Krisha). In TCM, Spleen Qi deficiency and the accumulation of Phlegm Dampness provide an
explanatory model that aligns with contemporary observations of gut dysbiosis, altered metabolites, and chronic low-
grade inflammation in metabolic syndrome. Unani medicine similarly emphasizes humoral disequilibrium and kidney
dysfunction in Ziabetus, linking altered absorptive and retentive powers to polyuria and metabolic imbalance (Figure 1).

Figure 1. Conceptual overview of TM systems and their alignment with metabolic pathophysiology in T2DM and obesity.

2.1.1 Ayurveda: The Science of Metabolic Balance

Ayurveda, the ancient medical system of the Indian subcontinent, possesses a sophisticated classification of metabolic
disorders, primarily conceptualized under Prameha (urinary disorders) and Medoroga (disease of fat) or Sthaulya
(obesity) [13].

2.1.2 Pathophysiology of Prameha and Medoroga

The root words that describe excessive (Prakarsa) and turbid (Avila) urination (Mehati) are the source of the term
Prameha, which is consistent with the polyuria and glycosuria seen in diabetes. 9 Ayurveda categorizes Prameha into 20
subtypes based on the dominance of the three Doshas (bio-energies): 10 Kaphaja (dominant in early diabetes/obesity), 6
Pittaja (associated with inflammation/infection), and 4 Vataja (associated with advanced wasting/neuropathy) types.
Madhumeha (honey urine), a subtype of Vataja Prameha, is frequently associated with Type 1 Diabetes or terminal or
uncontrolled T2DM [14,15].

The etiology of Prameha is explicitly linked to lifestyle factors. Ancient texts cite "sedentary habits" (Asyasukham),
"excessive sleep," and the consumption of "Kapha-aggravating" foods such as dairy, sugar (Ikshu), and fresh grains as
primary causes. This mirrors the modern risk factors of physical inactivity and high-glycemic diets [16]. Agni and Ama:
Central to Ayurvedic pathology is the concept of Agni (digestive fire). In Prameha, the Agni is disturbed, leading to the
formation of Ama (metabolic toxins) due to incomplete metabolism. This Ama blocks the Srotas (channels), causing
insulin resistance at the tissue level [17]. Dhatu Dushya (Tissue Vitiation): The disease primarily affects the Medas
(adipose tissue), Mamsa (muscle), and Kleda (body fluids). Medodushti (vitiation of fat) is the common pathological
ground for both obesity (Sthaulya) and diabetes. In Sthaulya, there is an abnormal increase in Meda Dhatu which
obstructs the path of Vata, leading to increased appetite (Ati-agn) and further weight gain. Classification by Body
Constitution: Ayurveda distinguishes between Sthula (obese) Pramehi, who require Apatarpana (depletion/purification)
therapies, and Krisha (lean) Pramehi, who require Santarpana (nourishment). This nuanced classification anticipates
the modern distinction between obese T2DM phenotypes and lean/ketosis-prone diabetes.

2.2 Traditional Chinese Medicine: Qi, Dampness, and Spleen Function

In TCM, diabetes has been referred to as Xiao Ke or (Wasting-Thirst Syndrome) since ancient times due to symptoms
such as polydipsia, polyphagia, and polyuria. It perceives obesity as a condition of accumulated Phlegm and Dampness
[18]. The core pathogenesis of metabolic disorders in TCM revolves around the dysfunction of the Spleen and the
accumulation of pathological products known as "Phlegm-Dampness" (Tan Shi) [18]. Spleen Deficiency (Pi Xu): In
TCM physiology, the Spleen is responsible for the "transportation and transformation" of nutrients (Gu Qi) and fluids.
When Spleen Qi is deficient often due to poor diet (excessive sweet/greasy food), overwork, or sedentary behaviour it
fails to distribute fluids correctly. These fluids accumulate to form "Dampness," which over time condenses into
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"Phlegm" [19]. Phlegm-Dampness Constitution (PDC): TCM typologies classify individuals with a "Phlegm-Dampness
Constitution" as having a high susceptibility to metabolic syndrome. These individuals typically present with central
obesity, a sticky sensation in the mouth, fatigue, and a thick, greasy tongue coating [20]. Modern Correlates: Recent
research has successfully bridged TCM concepts with modern biomarkers. Patients with PDC have been shown to have
distinct gut microbiota profiles (e.g., reduced Flavonifractor plautii) and altered serum metabolites (e.g., lower
phytosphingosine), which are linked to PPAR-alpha signaling and lipid metabolism. This provides a biological basis for
the "turbid pathogen" concept in TCM [21].

2.2.1 Therapeutic Principles

TCM management focuses on "fortifying the Spleen," "resolving Phlegm," and "clearing Dampness." Formulations
often use aromatic and bitter herbs to revive the Spleen's transportive function and dissolve adipose accumulation [22].

2.2.2 Clinical and Patent Evidence of Chinese Medicine in T2DM

RCTs and several meta-analyses support the glycaemic benefits of specific Chinese patent medicines when used as
monotherapy or as add-on therapy. Jinlida granules (a marketed Chinese herbal granule) have shown clinically
meaningful effects: controlled trials and pooled analyses report improved glycaemic control and, importantly, a
randomized clinical trial (n=889, median follow-up 2.2 y) found Jinlida reduced progression from impaired glucose
tolerance to diabetes. Shorter RCTs also show HbA1c/FPG Fasting plasma glucose reductions when Jinlida is added to
metformin.

Xiaoke (Xiaoke Decoction / Xiaoke Pill) formulations often combined with conventional agents have been evaluated in
meta-analyses and RCTs showing improvements in FPG, 2-h PG and HbA1c versus Western medicine alone; however,
heterogeneity in composition, dose and outcome reporting limits definitive interpretation.

Systematic reviews of Chinese patent medicines indicate overall favorable signals for FPG/2-hPG/HbA1c but
emphasize small sample sizes, short durations and inconsistent standardization across trials; these limitations should
temper clinical recommendations.

The patent landscape for TCM anti-diabetic preparations is active (multiple CN patents and families); representative
filings include traditional formula patents and patented preparation methods (e.g., CN101190262A). A concise patent
summary (number of families, major applicants, and key target mechanisms) is recommended when discussing
translational/commercial prospects.

2.3 Unani Medicine: Humoral Equilibrium and Kidney Function

Unani medicine, based on the teachings of Hippocrates, Galen, and Avicenna (Ibn Sina), considers health as the balance
of four humors: Blood-Dam, Phlegm-Balgham, Yellow Bile-Safra, and Black Bile-Sauda [23].

2.3.1 Concept of Ziabetus (Diabetes)

Unani literature describes Ziabetus primarily as a disorder of the kidneys. The pathophysiology is attributed to a "hot"
temperament (Su-e-Mizaj Haar) of the kidneys, which weakens their "retentive power" (Quwate Masika) and increases
their "absorptive power" (Quwate Jaziba). Consequently, the kidneys absorb fluids excessively from the circulation and
excrete them immediately without proper metabolic utilization, leading to intense thirst and polyuria [24].

2.3.2 Concept of Obesity and Temperament

Obesity is frequently linked to an excess of the Balgham (Phlegm) humor, which is cold and moist in nature.
Individuals with a "Phlegmatic" temperament are predisposed to a slow metabolism, fluid retention, and adipose
accumulation. Conversely, Sanguine (Blood-dominant) individuals may develop metabolic disorders due to a robust
appetite and "high living," leading to metabolic excesses [24].

2.3.3 Therapeutic Approach

Unani treatment (Ilaj bil Tadbeer) involves restoring the temperamental balance. For diabetes, cooling herbs are used to
correct the hot temperament of the kidneys. For obesity, "desiccating" and warming therapies are employed to resolve
excess Phlegm [24].

2.4 Ethnopharmacology and Key Medicinal Plants

The integration of these traditional systems into modern practice is largely mediated through their pharmacopoeia.
Numerous plants identified in ancient texts have been subjected to rigorous scientific scrutiny, revealing bioactive
compounds with potent antidiabetic and anti-obesity properties [25].
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2.4.1 Gymnema Sylvestre (Gurmar): The "Sugar Destroyer"

Gymnema sylvestre, a woody climber from the Asclepiadaceae family, is revered in Ayurveda as Gurmar, literally 

translating to "sugar destroyer." It has a dual action on both taste perception and glucose metabolism. Bioactive 

Constituents: The primary active constituents are the group of saponins, triterpene gymnemic acids, and peptide 

gurmarin or gymnemas [26]. Taste Suppression: Gymnemic acids have a unique molecular structure similar to glucose.
The acids present in the leaves when chewed, will connect to the sweet taste receptors located on the tongue, and will 

then block the feeling of sweetness for a short moment. This mechanism is utilized clinically to reduce sugar cravings in 

patients with obesity [27]. Intestinal Glucose Absorption: In the intestine, gymnemic acids attach to receptor sites in the 

absorptive surface: they are said to inhibit the uptake of glucose molecules. This reduces postprandial hyperglycemia 

[28]. β-cell functional preservation: β-cell effects (preclinical evidence) showed that several rodent studies report that 

Gymnema extracts are associated with increases in islet area and markers of β‑cell function on histological and 

functional assays. These observations derive from diabetic animal models and suggest improved β‑cell survival or 

restoration of function under experimental conditions; however, they remain preclinical and do not establish β‑cell 

regeneration in humans [29].

2.4.2Momordica Charantia (Bitter Melon): AVegetable Insulin

Momordica charantia (Cucurbitaceae), widely used in Asian and African TMs, acts as a potent metabolic modulator.
Bioactive Constituents: The plant is rich in charantin (a mixture of sterol glucosides), polypeptide-p (an insulin-like 

protein), and vicine [30]. Insulin-Mimetic Action: Polypeptide-p, often called "p-insulin," has been shown to lower 

blood glucose levels when administered subcutaneously, mimicking the action of endogenous insulin [31,32]. AMPK 

Activation: Modern research has identified that cucurbitane-type triterpenoids in bitter melon activate (AMPK). This 

route promotes the movement of (GLUT4) Glucose transporter type 4 to the plasma membrane in skeletal muscle,
which leads to increased glucose absorption without the help of insulin [33]. Anti-adipogenic Effects: Momordica 

extracts suppress the differentiation of preadipocytes and reduce adipose tissue inflammation by inhibiting the (NF-κB)
Nuclear factor kappa B and MAPK signaling pathways [34]. This dual action on glucose and fat metabolism makes it 

highly relevant for managing diabesity [35]. Critical factors contributing to heterogeneity: The variability in clinical 

outcomes for Momordica charantia is likely driven by differences in bioavailability of active constituents (e.g.,
charantin, polypeptide-p), inconsistent extract standardization (juice vs. aqueous vs. ethanolic extracts), dose and 

formulation differences (fresh fruit, dried powder, concentrated extract), and study-design heterogeneity (short durations,
small sample sizes, and variable endpoints). Reported HbA1c reductions across clinical trials typically range from 

approximately 0.2-0.8%, with more consistent and larger reductions observed in studies that used standardized extracts,
higher doses, and longer intervention periods. These ranges are approximate and reflect between-study variability; they 

should be interpreted cautiously.

2.4.3 Berberis Species and Berberine: The Natural Metformin

Berberine is a yellow isoquinoline alkaloid isolated from plants like Coptis chinensis (used in TCM) and Berberis 

aristata (used in Ayurveda). It is currently one of the most researched phytochemicals for metabolic syndrome.
Mechanism of Action: Berberine shares a key mechanism with metformin. The drug inhibits the mitochondrial 

Complex I thus causing the AMP/ATP ratio to rise that later activates the AMPK [36]. Metabolic Effects: Activation of 

AMPK by berberine leads to: Inhibition of lipogenesis (via Acetyl-CoA Carboxylase inhibition). Increased fatty acid 

oxidation. Enhanced glucose uptake in muscle and liver. Lipid Regulation: Unique to Berberine is its ability to stabilize 

the mRNA of the Low-Density Lipoprotein Receptor (LDLR), preventing its degradation. This increases the clearance 

of LDL cholesterol from the blood, a mechanism distinct from statins [3,37].This dual efficacy on glucose and lipids 

addresses the dyslipidemia often co-occurring with T2DM [38].

2.4.4 Curcuma Longa (Turmeric): Targeting Metabolic Inflammation

Curcumin, the primary polyphenol in turmeric, addresses the inflammatory root of metabolic syndrome. Anti-
inflammatory Action: Obesity is characterized by a state of chronic low-grade inflammation. Curcumin potently inhibits 

the NF-κB pathway, reducing the production of pro-inflammatory cytokines like TNF-alpha and IL-6, which are known 

drivers of insulin resistance [39,40]. Adipocyte Modulation: Curcumin modifies Peroxisome Proliferator-Activated 

Receptor gamma (PPAR-γ). Unlike synthetic thiazolidinediones (TZDs) which are full agonists and can cause weight 

gain, curcumin suppresses adipocyte differentiation and lipid accumulation while maintaining insulin-sensitizing 

benefits Antioxidant Effects: It enhances the activity of antioxidant enzymes (SOD, catalase) and upregulates the (Nrf2)
Nuclear factor erythroid 2-related factor 2 pathway, protecting pancreatic β-cells from glucotoxicity-induced oxidative 

stress [41,42].

2.4.5 Salacia Species (S. Eticulata, S. Oblonga): The Carbohydrate Blocker

Native to India and Sri Lanka, Salacia roots have been used for centuries to treat diabetes. Bioactive Constituents: The 

primary active compounds are thiosugar sulfonium sulfates, specifically salacinol and kotalanol [43]. Alpha-
Glucosidase Inhibition: These compounds are potent competitive inhibitors of intestinal alpha-glucosidase enzymes. By



blocking the breakdown of disaccharides and oligosaccharides into glucose, Salacia extracts flatten the postprandial
glucose curve, a mechanism analogous to that of acarbose alpha-glucosidase inhibition [44]. PPAR-alpha Activation:
Additionally, Salacia has been shown to activate PPAR-alpha, promoting fatty acid oxidation and lowering triglyceride
levels, providing a comprehensive metabolic benefit [45].

2.4.6 Trigonella Foenum Graecum (Fenugreek): Fiber and Incretin Modulation

Fenugreek seeds are unique in combining pharmacological activity with nutritional fiber. Bioactive Constituents: The
seeds are rich in soluble fiber (galactomannan) and the amino acid 4-hydroxyisoleucine (4-OH-Ile) [46]. Gastric
Emptying and GLP-1: The high viscosity of galactomannan delays gastric emptying, slowing the absorption of
carbohydrates. This mechanism is similar to the physiological effects of GLP-1. By modulating the transit of nutrients,
Fenugreek can enhance the secretion of incretin hormones, improving postprandial glycemic control [47]. Insulin
Stimulation: 4-hydroxyisoleucine can directly stimulate insulin secretion from β-cells when glucose levels are high.
This helps reduce the risk of hypoglycemia [48].

Figure 2 illustrates the mechanistic actions of selected traditional medicinal plants on glucose and lipid homeostasis.
Gymnema sylvestre reduces sweet taste perception and intestinal glucose absorption, with reported preclinical evidence
suggesting pancreatic β-cell functional support. Momordica charantia exhibits insulin-mimetic activity and enhances
glucose uptake primarily through AMPK-mediated GLUT4 translocation while exerting anti-adipogenic effects.
Berberine from Berberis species activates AMPK and improves lipid metabolism via LDL receptor stabilization.
Curcuma longa modulates metabolic inflammation through NF-κB inhibition, PPAR-γ regulation, and antioxidant
(Nrf2-dependent) pathways. Salacia species attenuate postprandial hyperglycaemia by α-glucosidase inhibition and
activation of fatty-acid oxidation via PPAR-α. Trigonella foenum-graecum improves glycaemic control through delayed
gastric emptying, incretin (GLP-1) modulation, and glucose-dependent insulin secretion. Collectively, these pathways
converge on improved insulin sensitivity, reduced inflammation, and metabolic homeostasis.

Figure 2. Proposed molecular mechanisms of key medicinal plants involved in the regulation of metabolic health in
T2DM and obesity.

2.5 Experimental Evidence: Animal Models and Cell Lines

2.5.1 Preclinical Studies

In vitro cell assays and in vivo animal models provide the mechanistic foundation for many claims about traditional
medicinal plants discussed in this review. To synthesise this body of evidence, the following summary highlights
commonly used experimental models, typical mechanistic readouts, and the recurrent findings reported for key
botanical candidates.

2.5.2 Models and Common Readouts

In vivo studies predominantly employ rodent models of diabetes and obesity, including streptozotocin- or alloxan-
induced β-cell damage models, high-fat diet (HFD) or HFD in combination with streptozotocin models of insulin
resistance, and genetic models where appropriate. Typical endpoints include fasting glucose, oral glucose tolerance tests,
insulin tolerance tests, HbA1c (where measured), pancreatic histology (islet area, β-cell number, immunostaining for
insulin), adipose/tissue inflammatory markers, and lipid profiles. In vitro investigations commonly use human hepatoma
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cell line (HepG2), skeletal-muscle (L6 or C2C12 myotubes), L6 rat skeletal muscle cell line or C2C12 murine skeletal
muscle myoblast cell line adipocyte, (3T3-L1) murine adipocyte precursor cell line, and pancreatic β-cell lines, rat
insulinoma β-cell line (INS-1/INS-832/13) to probe glucose uptake, GLUT4 translocation, insulin secretion, enzyme
inhibition (α-glucosidase/α-amylase), AMPK phosphorylation, NF-κB signalling, and oxidative stress markers.
Rodent studies investigating Gymnema sylvestre consistently report reduced postprandial glycaemia and improved
glycaemic indices. Histological analyses in diabetic animal models demonstrate increased islet area and markers of β-
cell function, findings that are consistent with enhanced β-cell survival and functional preservation under preclinical
conditions. In vitro assays further indicate inhibition of intestinal glucose uptake and modulation of glucose transporter
activity. However, evidence for β-cell regeneration remains limited to preclinical models and has not been established in
humans.
For Momordica charantia (bitter melon), both in vitro and rodent studies demonstrate activation of AMPK, enhanced
GLUT4 translocation in skeletal muscle cells, and suppression of adipogenesis in 3T3-L1 adipocytes. Animal models of
dietary- and chemically induced diabetes show improvements in glucose tolerance and reductions in adipose tissue
inflammation, although reported effects vary depending on extract composition and dosage.
Berberine derived from Berberis species has been extensively evaluated in cell-based and animal studies. In vitro
investigations show that berberine inhibits mitochondrial complex I, leading to an increased AMP/ATP ratio and
subsequent activation of AMPK. Corresponding animal models demonstrate improvements in glycaemic control and
lipid profiles, supporting mechanistic overlap with established insulin-sensitising pathways.
Preclinical studies of Curcuma longa (curcumin) using high-fat diet and other diabetic rodent models reveal reductions
in adipose tissue inflammation, decreased NF-κB activation, improved insulin sensitivity, and favourable modulation of
adipokine profiles. Complementary in vitro studies further document inhibition of NF-κB signalling and activation of
antioxidant responses through Nrf2-dependent pathways.
For Salacia species, enzyme-based assays confirm potent α-glucosidase inhibitory activity in vitro. These findings are
supported by animal feeding studies demonstrating attenuation of postprandial hyperglycaemia and improvements in
lipid handling, indicating a primary role in postprandial glucose regulation.
Studies of Trigonella foenum-graecum (fenugreek) using in vitro and ex vivo systems support delayed carbohydrate
absorption mediated by viscous galactomannan fibre, incretin modulation, and glucose-dependent insulin secretion
driven by 4-hydroxyisoleucine. Consistent with these findings, rodent models show improved postprandial glycaemia
and enhanced insulin dynamics.
Interpretation of preclinical findings requires caution. Evidence derived from in vitro systems and animal models
primarily supports mechanistic plausibility rather than clinical efficacy. While these studies provide valuable insights
into molecular pathways such as AMPK activation, PPAR modulation, α-glucosidase inhibition, and incretin signaling,
they do not establish therapeutic equivalence or predict clinical outcomes in humans. Accordingly, all preclinical
observations discussed in this review should be regarded as hypothesis-generating and require confirmation through
adequately powered, well-designed human clinical trials before definitive clinical conclusions can be drawn.

2.5.3 Molecular Mechanisms of Action

To avoid redundancy with the preceding ethnopharmacological descriptions, this section reorganizes mechanistic
information by molecular pathway rather than by individual plant. While specific mechanisms such as AMPK activation,
PPAR modulation, α-glucosidase inhibition, and incretin signaling are introduced within plant-centric contexts earlier,
they are synthesized here in a pathway-centric framework to highlight shared molecular hubs and convergent
mechanisms across diverse traditional medicinal systems.
Understanding the molecular targets of these TMs allows for a rational integration with modern pharmacotherapy
[49,50]. These agents often act as "dirty drugs" or "poly-pharmacological agents," hitting multiple targets
simultaneously to restore metabolic homeostasis.

2.5.4 AMPK Signaling Hub

AMPK serves as the cellular "fuel gauge." In states of nutrient excess (obesity/T2DM), AMPK activity is often
suppressed [51]. Intervention: Both Berberine and Momordica triterpenoids activate AMPK. This activation triggers a
cascade of metabolic corrections: it inhibits mTOR (promoting autophagy and cellular repair), translocates GLUT4 to
the sarcolemma [52,53] (increasing glucose uptake), and inhibits Acetyl-CoA Carboxylase (promoting mitochondrial
fatty acid oxidation). This overlaps with the mechanism of Metformin and exercise, suggesting that these herbs can act
as "exercise mimetics" [54].

2.5.5 PPAR Modulation: Balancing Storage and Oxidation

PPARs are nuclear transcription factors that control lipid and glucose metabolism [55]. PPAR-gamma: Synthetic TZDs
activate PPAR-gamma to improve insulin sensitivity but often induce adipogenesis (weight gain) [56]. Curcumin and
Momordica compounds act as selective PPAR-gamma modulators (SPPARMs), improving insulin sensitivity while
inhibiting adipogenesis, thus uncoupling the therapeutic benefit from the adverse effect of weight gain [57]. PPAR-
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alpha: Salacia extracts activate PPAR-alpha, mimicking the effect of fibrates. This promotes the hepatic uptake and
oxidation of fatty acids, directly addressing the dyslipidemia that contributes to cardiovascular risk in diabetics [58,59].

2.5.6 The Incretin Axis and Gastric Motility

The incretin hormones glucose-dependent insulinotropic polypeptide” are crucial for the "incretin effect"-the enhanced
insulin response to oral glucose. Intervention: Fenugreek works by delaying gastric emptying through soluble fiber. This
fiber modulates how nutrients interact with L-cells in the gut. As a result, it may help sustain GLP-1 release [60-62].
This mechanism offers a synergistic potential with DPP-4 inhibitors (which prevent GLP-1 degradation) or GLP-1
receptor agonists, potentially allowing for lower doses of synthetic agents [63-66]. Inhibition of Carbohydrate Digestion:
Alpha-glucosidase enzymes in the brush border of the small intestine [67-69]. Salacia species and Gymnema contain
inhibitors that block these enzymes [70-72]. By delaying carbohydrate digestion, they reduce the magnitude of
postprandial glucose spikes [73-75]. This "peak flattening" effect [76], reduces glucotoxicity and the secretory burden
on pancreatic β-cells [77-79].

3. Results

3.1 Synthesized Clinical Evidence and Translational Considerations

The clinical evidence supporting the use of traditional medicinal plants in the management of T2DM and obesity is
derived primarily from RCTs, controlled clinical studies, and meta-analyses evaluating standardized extracts or defined
formulations as monotherapy or adjunctive therapy. Overall, these studies report modest but consistent short-term
improvements in glycaemic parameters, including fasting plasma glucose and HbA1c, along with variable effects on
body weight and lipid profiles. However, the strength of evidence is constrained by heterogeneity in study design,
extract standardization, dosage, intervention duration, and background pharmacotherapy, which complicates direct
comparison across trials. As shown in Table 1, while certain phytochemicals such as berberine and curcumin
demonstrate relatively reproducible metabolic signals across multiple studies, evidence for other interventions remains
variable, underscoring the need for cautious interpretation and rigorous, standardized clinical evaluation.

Table 1. Clinical evidence summary for key medicinal plants: study design, sample size, duration, interventions, outcomes, and
evidence quality.

While preclinical data is compelling, the translation to clinical practice requires rigorous validation [80-82]. The 

following section synthesizes data from RCTs and meta-analyses [83-85]. Reported HbA1c changes should be 

interpreted in the context of modest baseline HbA1c levels, short follow-up durations, and frequent concomitant therapy.
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The current clinical evidence supporting traditional medicinal plants in T2DM and obesity is characterized by modest
efficacy signals accompanied by significant translational constraints (Figure 3). Among the evaluated agents, berberine
shows the most reproducible short-term improvements in glycaemic indices across multiple RCTs and meta-analyses,
yielding a moderate level of evidence. Gymnema sylvestre demonstrates clinically relevant HbA1c reductions and
insulin-sparing effects, although the overall strength of evidence remains limited by small sample sizes and short
intervention durations. In contrast, outcomes for Momordica charantia are highly variable, reflecting heterogeneity in
formulations and study designs. Salacia species exhibit comparatively consistent postprandial glucose-lowering effects,
while curcumin shows moderate evidence for weight-related and adipokine-mediated benefits rather than direct
glycaemic control.

Figure 3. Clinical evidence and translational considerations for key medicinal plants used in the management of T2DM and obesity.

3.2 Berberine vs. Metformin: Comparative Efficacy

Several high-quality trials have benchmarked Berberine against Metformin, the gold standard for T2DM [86-90].
Glycemic Control: In a landmark RCT involving prediabetic patients, Berberine HCl was compared directly to
Metformin [91-93]. The results showed short-term glycaemic reductions of comparable magnitude in small RCTs:
Berberine reduced (FPG) from 109.8 mg/dl to 97.2 mg/dl, while Metformin reduced it from 110.2 mg/dl to 99.4 mg/dl.
HbA1c reductions were also similar (0.31% vs. 0.28%) [94]. Lipid Profile: Berberine demonstrated a superior effect on
lipid profiles, significantly lowering Triglycerides (TG) and LDL-Cholesterol, whereas Metformin had negligible
effects on lipids [95-99]. Adverse Events: The safety profile of Berberine was favorable, with a 20% incidence of mild
gastrointestinal side effects compared to 30% in the Metformin group [100-103]. This suggests Berberine is a viable
alternative for patients intolerant to Metformin [104-106].

3.3 Gymnema Sylvestre: Clinical Outcomes

Insulin Sparing Effect: A key finding in clinical literature is Gymnema's ability to reduce insulin requirements [107-111].
In trials involving Type 2 diabetics on oral medications, supplementation with 600 mg/day of Gymnema extract
significantly reduced HbA1c and FPG compared to placebo [112-116].It also facilitated a reduction in the dosage of
conventional medicines, supporting its role as an adjunct therapy [117-120]. Regenerative Potential: Improvements in
glycaemic control reported in some longer-term studies may reflect enhanced β‑cell function or preservation, but direct
evidence of β‑cell regeneration in humans is lacking; available clinical data are insufficient to confirm regeneration and
require dedicated translational biomarker studies (e.g., stimulated C‑peptide) [121-124].

3.4Momordica Charantia: Heterogeneity in Results

Meta-Analysis Data: Evidence for Momordica is mixed. Some meta-analyses report significant reductions in FPG and
HbA1c, while others find low certainty of evidence due to high heterogeneity in study designs [125-128]. Formulation
Matters: The inconsistency likely stems from the variation in preparations (juice vs. dried powder vs. extract) [129-132].
Trials using standardized extracts of polypeptide-p or charantin tend to show more consistent hypoglycemic effects
compared to crude fruit preparations [133-136].
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3.5 Salacia Species: Postprandial Control

RCTs using Salacia extracts (often incorporated into biscuits or tea) have consistently demonstrated significant
reductions in postprandial glucose excursions and HbA1c (reductions of 0.25-0.35%). These studies highlight its utility
as a "medical nutrition therapy" or functional food ingredient for prediabetes and early T2DM [137-140].

3.6 Curcuma Longa: Metabolic Syndrome Management

A comprehensive meta-analysis of 18 RCTs involving over 1,600 individuals concluded that Curcumin intake
significantly reduces BMI, body weight, and waist circumference in patients with metabolic syndrome [141-143].
Crucially, it also increased levels of adiponectin an anti-inflammatory hormone inversely correlated with body fat
confirming its role in ameliorating adipose tissue dysfunction [144,145].

3.7 Safety, Toxicity, and Regulatory Aspects

For clarity, safety concerns discussed in this section are distinguished between clinically documented adverse events
and theoretical or preclinical risks. Documented clinical cases are derived from human case reports, clinical trials, or
post-marketing surveillance, whereas theoretical risks primarily arise from preclinical toxicology studies, mechanistic
considerations, or limited observational evidence. This distinction is important to avoid overestimation of risk and to
contextualize safety findings appropriately for clinical practice.

The integration of TMs into mainstream healthcare is contingent upon rigorous safety assurances [146]. The perception
that "natural" equates to "safe" is a dangerous fallacy that must be addressed through pharmacovigilance [147].

3.8 Herb-Drug Interactions and Toxicity Risks

Serotonin Toxicity: Garcinia cambogia containing Hydroxycitric Acid (HCA) is popular for weight loss [148]. However,
HCA increases serotonin levels. Case reports have documented severe serotonin toxicity (manifesting as tremors,
hypertension, and ocular clonus) in patients taking Garcinia concurrently with SSRIs (e.g., fluoxetine). This highlights
a critical herb-drug interaction that clinicians must screen for [149]. Hepatotoxicity: In clinical practice, most
commonly used medicinal plants are well tolerated; however, a small number of case reports have described unexpected
liver injury associated with certain herbal supplements. Concerns about long-term hepatic toxicity from concentrated
extracts remain largely theoretical and are primarily derived from preclinical studies, highlighting the importance of
routine liver function monitoring during prolonged use [150]. Hypoglycemia: Clinically documented cases indicate that
the glucose-lowering effects of herbs such as Gymnema, Berberine, and Momordica may precipitate hypoglycemia
when used concomitantly with sulfonylureas or insulin. These events reflect additive pharmacodynamic effects rather
than intrinsic toxicity, and often necessitate dose adjustment of conventional antidiabetic agents [151].

3.9 Global Regulatory Frameworks

WHO Pharmacovigilance: The WHO has established guidelines for safety monitoring of herbal medicines, advocating
for their inclusion in national pharmacovigilance systems. However, implementation remains inconsistent. In countries
like Tanzania, assessment of regulatory authorities revealed significant gaps, such as underreporting of adverse
reactions and a lack of qualified pharmacovigilance personnel among herbal manufacturers [152].

FDA (USA): In the United States, botanical products are regulated differently from small-molecule drugs. The FDA's
"Guidance for Industry on Botanical Drug Products" provides a way for these products to be approved as prescription
drugs (NDA). This process requires strict Chemistry, Manufacturing, and Controls (CMC) data to ensure consistency in
batches. However, most herbals are marketed as Dietary Supplements under Dietary Supplement Health and Education
Act (DSHEA), which does not require pre-market proof of efficacy, leading to variability in product quality [153].

AYUSH (India): The Ministry of Ayurveda, Yoga & Naturopathy, Unani, Siddha and Homoeopathy (AYUSH) has
formalized the management of Prameha through clinical protocols. These guidelines recommend a graded approach:
starting with lifestyle and single herbs (Amalaki, Guduchi) for prediabetes, and escalating to polyherbal formulations for
established T2DM. This structured approach offers a model for integrating traditional knowledge into national health
programs [154].

3.10 Standardization Technologies FDA

Ensuring the reproducibility of herbal medicines is a major challenge. Modern analytical techniques are now essential.
HPTLC/HPLC: High-Performance Thin-Layer Chromatography (RCT)/ High-performance liquid chromatography
(HPLC) is commonly used to identify polyherbal formulations. By measuring specific marker compounds, such as
mangiferin in Salacia and gymnemic acids in Gymnema, manufacturers can confirm that each batch provides a
consistent therapeutic dose. This "marker-based standardization" is a prerequisite for reliable clinical trials and practice
[155]. As shown in Table 2, key medicinal plants and their principal phytoconstituents converge on shared metabolic
targets, including AMPK activation, PPAR modulation, α-glucosidase inhibition, and incretin pathway regulation,
which collectively underpin their reported glycaemic and metabolic effects.
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Table 2. Key phytochemicals, molecular targets, and supporting clinical evidence in T2DM.

Plant Species

3.11 Modern Tools: Omics, Network Pharmacology, and AI

The modernization of TM is being revolutionized by the application of systems biology tools, which align perfectly 

with the holistic nature of TM.

3.11.1 Network Pharmacology: Decoding Synergy

Network pharmacology allows for the analysis of "multicomponent-multitarget" networks, moving beyond the single-
target paradigm. An analysis of the TCM formula Shen-Qi revealed that its multiple herbal ingredients target a shared 

network of genes (AKT1, IL1B, PPARG) involved in insulin signaling and inflammation. This computational approach 

validates the "synergistic" theory, where different herbs hit different nodes of the same biological network to produce a 

robust therapeutic effect [156].

3.11.2 Metabolomics: Signatures of Efficacy

Metabolomics provides a snapshot of the organism's metabolic state. Studies have shown that herbal treatments can 

normalize specific metabolic biomarkers perturbed in diabetes (e.g., succinate, citrate, branched-chain amino acids). For 

instance, specific lipidomic profiles have been identified that correlate with TCM syndromes, offering objective 

biomarkers for traditional diagnoses [157].

3.11.3 Artificial Intelligence (AI): The Future of Discovery

AI and machine learning algorithms are being trained on large datasets to predict patient responses to herbal 

interventions. This paves the way for "Personalized Integrative Medicine," where a patient's genetic and metabolic
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profile can be matched to the most effective herbal formulation [158]. Generative AI models are now screening vast
libraries of phytochemicals to identify novel inhibitors of diabetic targets (e.g., SGLT2, DPP-4), accelerating the
discovery of new drugs from ancient pharmacopoeias [159]. As shown in Table 3, traditional medical systems
conceptualize diabetes and obesity as systemic disorders arising from functional imbalance, a perspective that aligns
with the modern understanding of metabolic syndrome as a multi-pathway disease driven by insulin resistance, lipid
dysregulation, and chronic inflammation.

Table 3. Comparative analysis of traditional vs. Modern metabolic concepts.

Concept Domain Ayurveda
(Prameha/Medoroga)

TCM (Xiao Ke/Phlegm-
Dampness) Unani (Ziabetus) Modern Medicine

(Metabolic Syndrome)

Primary Etiology

Sedentary lifestyle
(Asyasukham), Kapha-
aggravating diet (dairy,
sugar).

Spleen Deficiency (Pi
Xu), consumption of
greasy/sweet foods.

Weakened Kidney
retention (Quwate
Masika), Hot
temperament.

Insulin resistance,
caloric excess, physical
inactivity.

Pathophysiology

Agni disturbance leading
to Ama (toxins) and
Medodushti (fat
vitiation).

Failure of fluid transport
leading to Dampness and
Phlegm accumulation.

Rapid renal absorption
and excretion; Humoral
imbalance (Balgham
excess in obesity).

Glucotoxicity,
Lipotoxicity, Chronic
low-grade
inflammation.

Clinical Features
Polyuria (Prabhutavil
Mutrata), turbidity in
urine.

Thirst, wasting, sticky
sensation in mouth,
central obesity.

Excessive thirst,
polyuria, rapid transit of
fluids.

Polyuria, Polydipsia,
Central Adiposity,
Dyslipidemia.

Therapeutic Goal
Apatarpana (depletion)
for obese; Samshodhana
(purification).

Fortify Spleen, resolve
Phlegm, clear Dampness.

Correct temperament
(Mizaj), strengthen
kidney retention.

Glycemic control
(HbA1c <7%), Weight
loss, Lipid
normalization.
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3.12 Conceptual Workflow for Future Integrative Studies

This section outlines a conceptual framework illustrating how modern computational approaches may be applied in 

future integrative studies of TMs.

3.12.1 Compound Identification

To obtain a validated compound list and canonical chemical identifiers, compile chemical records from primary 

cheminformatics repositories (for example, retrieve berberine’s SMILES, InChI/InChIKey and PubChem CID from 

PubChem or ChEMBL). If the subject is a plant (e.g., Berberis spp.), assemble reported bioactive constituents from 

phytochemical databases (TCMSP, KNApSAcK) and the primary literature. Store 2D/3D structures in standard formats 

(SDF/MOL2) and record canonical identifiers for each entry. In the manuscript methods, report the exact database 

names, accession numbers and download dates, and document any choices regarding stereochemistry or salt/protomer 

forms.

3.12.2 Target Prediction (In Silico)

To generate a prioritized list of putative protein targets, submit the canonical chemical identifiers (e.g., SMILES/InChI)
to multiple complementary in-silico prediction platforms and aggregate results. Typical actions include ligand-based 

prediction (SwissTargetPrediction, SEA, TargetNet) and reverse/structure-based docking or pharmacophore matching 

(PharmMapper, idTarget). Record prediction scores or probabilities for each target and retain a consensus set (for 

example, targets predicted by ≥2 independent methods or above a pre-specified score threshold). Report the tools and 

versions, input identifiers, score cutoffs, and the date of access; provide UniProt IDs for predicted proteins and retain 

original prediction output files. Common pitfalls are server-specific scoring idiosyncrasies and false positives; mitigate 

these by using multiple methods, documenting cutoffs, and flagging low-confidence predictions for downstream 

orthogonal validation.

3.12.3 Disease Target Mapping

Assemble a curated list of diabetes-associated genes by querying disease databases (GeneCards, DisGeNET, OMIM)
and relevant GWAS resources, applying transparent evidence filters (e.g., relevance score or GWAS p-value threshold).
Harmonize gene identifiers (convert gene symbols to Entrez/GeneID/UniProt) and annotate each entry with source and 

evidence type (association, expression change, GWAS). Report database versions, query terms, thresholds, and the date 

retrieved. Beware of synonym redundancy and broad disease terms; avoid including genes with tenuous or non-specific 

evidence by applying pre-defined inclusion criteria and documenting them in Methods.



3.12.4 Network Construction

Construct a multi-layer network linking compound(s) to predicted targets and to disease genes, augmenting edges with
high-confidence protein-protein interactions (PPI) from STRING or BioGRID (specify confidence score cutoff, e.g.,
STRING combined score >0.7). Build the network in Cytoscape or an equivalent graph tool, exportable as
GraphML/XGMML, and compute topological metrics (degree, betweenness, closeness) for prioritization. Document
PPI database version and cutoff, network construction rules (edge types, evidence thresholds), software and versions,
and layout/visualization parameters. Common pitfalls include overly dense networks; apply filtering (confidence
thresholds, retain top-N neighbours) to maintain interpretability and reproducibility.

3.12.5 Pathway Enrichment and Mechanistic Inference

Perform functional enrichment on the intersecting target set (compound targets disease gene list) and on high-degree
subnetworks using GO, KEGG, and Reactome tools (DAVID, Enrichr, g: Profiler or cluster Profiler). Report the
background/universe used for enrichment, multiple testing correction method (e.g., Benjamini-Hochberg), significance
threshold (e.g., FDR < 0.05), and the version/date of pathway databases. Present ranked pathways with adjusted p-
values and mapped gene counts, emphasizing canonical metabolic and signaling pathways relevant to diabetes (e.g.,
AMPK, PI3K-Akt, insulin signaling). Pitfalls include inappropriate background choice and pathway redundancy;
address these by specifying the universe and by clustering or condensing related pathway terms for clarity.

3.12.6 AI-assisted Prioritization

Assemble a feature matrix where each candidate compound-target (or compound-target-pathway) entry is described by
prediction scores, docking scores (if available), network metrics (degree, centrality), tissue-specific expression overlap
(GTEx), and ADME/drug-likeness flags. Use transparent machine-learning approaches (ranking SVM, random forest,
XGBoost) or an interpretable scoring function for prioritization; when supervised labels are unavailable, apply
unsupervised or semi-supervised ranking with explicit weighting and sensitivity analysis. Report model type, feature
definitions, training/validation strategy (e.g., k-fold cross-validation), hyperparameters, and performance metrics where
applicable; if docking or MD was performed for top candidates, report software, scoring functions, and parameters.
Crucially, treat ML outputs as hypothesis generators: document steps taken to avoid overfitting, provide feature-
importance or SHAP explanations when possible, and plan orthogonal validation (docking, biochemical assay) for top-
ranked hypotheses.

4. Discussion

4.1 Integration of Mechanistic and Clinical Evidence

This review integrates mechanistic and clinical evidence to construct a pragmatic translational narrative. Mechanistic
studies identify recurrent pathways-AMPK activation, modulation of PPAR signaling, inhibition of α-glucosidase,
enhancement of incretin responses, and anti-inflammatory effects-that plausibly underlie observed short-term
improvements in glycaemic indices in several small clinical trials. Nevertheless, concordance between mechanistic and
clinical datasets is incomplete: many mechanistic observations are limited to in vitro and animal models, while clinical
studies are heterogeneous in extract standardization, dose, and duration. Accordingly, we recommend that mechanistic
hypotheses be explicitly linked to clinical end-points via translational biomarkers (e.g., stimulated C-peptide, mixed-
meal tolerance testing) in future trials to close the preclinical-clinical gap.

4.2 Strengths of the Review

The principal strengths of this review are its integrative scope and methodological transparency. By combining
ethnopharmacological context, mechanistic summaries, and an evidence-graded clinical synthesis, the work moves
beyond descriptive listing to a structured appraisal useful for translational planning. Inclusion of a clear Materials and
Methods section, an evidence-quality table, and an illustrative network-pharmacology/AI workflow enhances
reproducibility and provides practical tools for researchers prioritizing candidates for experimental follow-up. Emphasis
on real-world considerations, standardization challenges, bioavailability, and LMIC applicability, further increases the
review’s policy and implementation relevance.

4.3 Limitations

Several limitations temper the conclusions of this review. First, the narrative design and qualitative synthesis, while
intentionally broad, are susceptible to selection bias despite a comprehensive search strategy. Second, heterogeneity in
intervention formulations, small sample sizes, and short follow-up across clinical studies limit the generalizability and
magnitude estimation of therapeutic effects. Third, a sizable portion of mechanistic evidence derives from preclinical
models; these findings, though valuable for hypothesis generation, do not establish clinical efficacy. Finally, language
restrictions and possible publication bias may have excluded relevant data; these limitations underscore the need for
standardized reporting and higher-quality trials.
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4.4 Implications for Research and Clinical Practice

For research, priorities are clear: development of chemically standardized extracts, routine pharmacokinetic and
bioavailability profiling, selection of translational biomarkers, and adequately powered RCTs with clinically meaningful
endpoints [160,161]. Network pharmacology and AI should be deployed as hypothesis-generating approaches that feed
into prioritized experimental validation (docking, biochemical assays, short-term human pharmacology studies). For
clinical practice, current evidence supports cautious, context-specific adjunctive use of certain herbal preparations
where clinical data exist, paired with active monitoring for efficacy and safety (glycaemia, liver function) and attention
to herb-drug interactions. Clinicians should counsel patients about limited evidence and prioritize evidence-based
therapies as first-line treatment while considering herbal therapies as complementary under monitored conditions.

4.5 Translational Aspects, Challenges, and Future Directions

Despite the promise, several barriers impede the full integration of TM into modern care: Standardization: The inherent
biological variability of plants makes standardization difficult. Adopting rigorous "Seed-to-Shelf" quality control is
essential [162]. Clinical Trial Design: Standard RCT designs may not capture the personalized nature of TM (e.g.,
treating based on Dosha or Constitution). Future trials should incorporate "whole system" research designs that allow
for individualized formulations within a rigorous framework [163]. Intellectual Property: Protecting traditional
knowledge while incentivizing commercial drug development remains a complex legal hurdle [164].

Reverse Pharmacology: Instead of the "molecule-to-man" approach, research should adopt "reverse pharmacology,"
starting with documented clinical success in TM practice and working backward to identify mechanisms and active
fractions [165,166]. Integrative Clinics: establishing clinics where modern diabetologists and TM practitioners work in
tandem can generate real-world evidence and optimize patient outcomes [167,168]. Global Harmonization:
Harmonizing regulatory standards for herbal medicines across the WHO, FDA, and European Medicines Agency would
facilitate the global acceptance and trade of high-quality TMs [169,170].

5. Conclusion

The global burden TDM and Obesity demands a paradigm shift in management strategies. The relentless rise in
prevalence, coupled with the limitations of current pharmacotherapy, necessitates a broader, more inclusive therapeutic
arsenal. TM systems-Ayurveda, TCM, and Unani-offer time-tested, multi-targeted strategies that address the root causes
of metabolic dysregulation: diet, lifestyle, and physiological balance.

This report demonstrates that the efficacy of plants like Gymnema sylvestre, Momordica charantia, and Berberine is not
merely folklore but is grounded in potent, scientifically validated molecular mechanisms involving AMPK activation,
PPAR modulation, and incretin regulation. When integrated with modern tools like network pharmacology, AI, and
rigorous pharmacovigilance, these ancient therapies offer a sophisticated "systems biology" solution to the complex
problem of metabolic syndrome.

The path forward lies in the rigorous scientific validation and respectful integration of these systems. By bridging
ancient wisdom with modern science, we can develop a more resilient, effective, and patient-centered approach to
conquering the metabolic pandemic, offering hope to the hundreds of millions of individuals living with diabetes
worldwide.
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